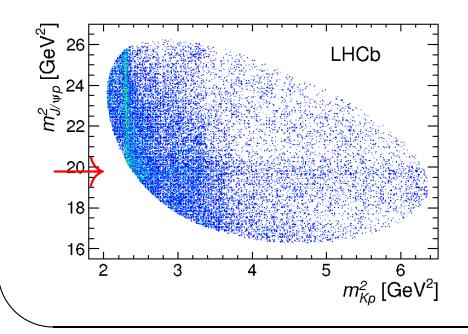
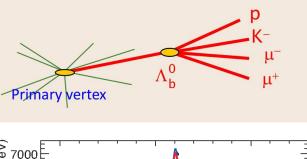
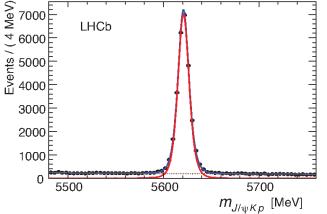

Heavy flavour spectroscopy and hadron properties from LHCb

Antimo Palano

INFN and University of Bari, Italy On behalf of the LHCb Collaboration

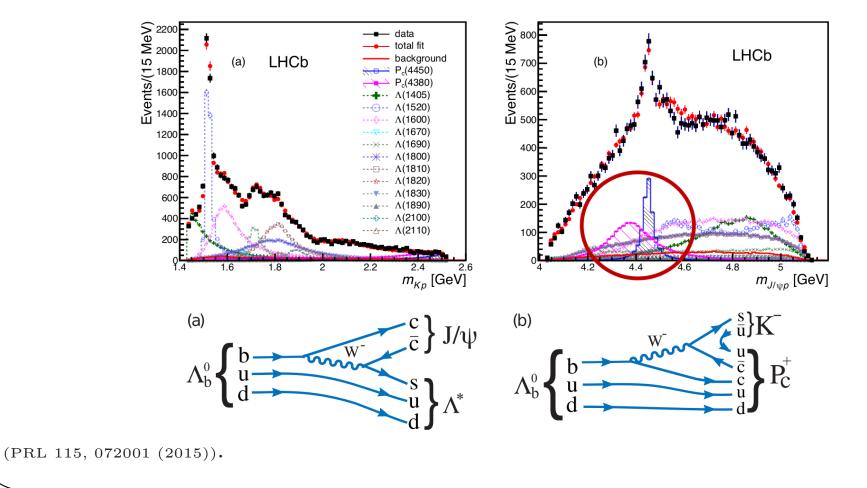

QCD@Work - International Workshop on QCD Theory and Experiment, 25-28 June 2018, Matera, Italy




 \Box Multivariate Analysis (MTVA) selection.

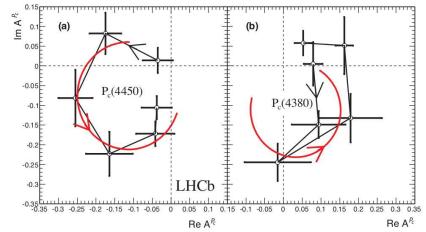
 \square 26,007 ± 166 Λ_b^0 events with 94.6% purity.

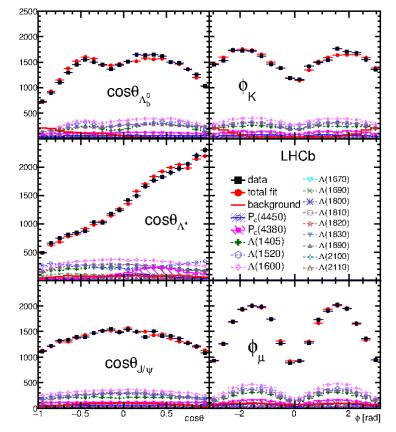
□ The Dalitz plot shows rich Λ's resonant structures along the pK⁻ axis.
□ Unexpected structure along the J/ψp axis.



(PRL 115, 072001 (2015)).

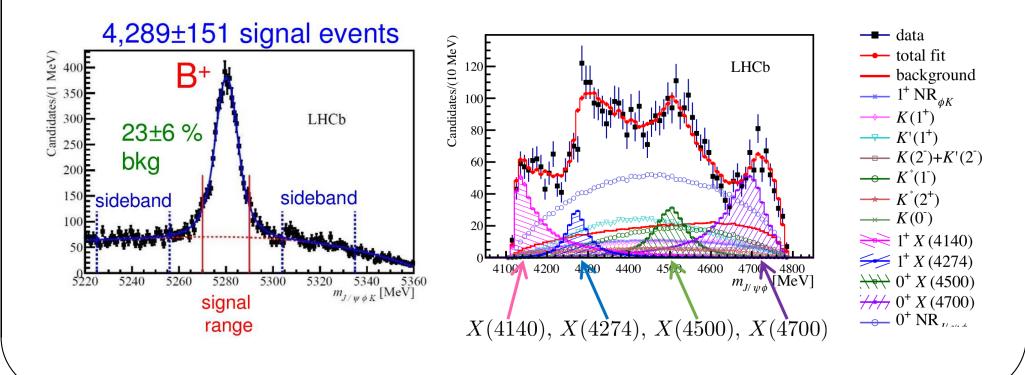
Amplitude analysis and mass projections


 \Box Key point is a full amplitude analysis which also describes the complex resonant structure in the pK^- final state.


 \Box The analysis requires the presence of two new resonances (labelled P_c).

	Resonances parameters and angular analysis					
Resonance	Mass~(MeV)	Width (MeV)	Significance	Fit fraction $(\%)$		
$P_c(4380)^+$	$4380\pm8\pm29$	$205 \pm 18 \pm 86$	9σ	$8.4 \pm 0.7 \pm 4.2$		
$P_c(4450)^+$	$4449.8 \pm 1.7 \pm 2.5$	$39\pm5\pm19$	12σ	$4.1\pm0.5\pm1.1$		

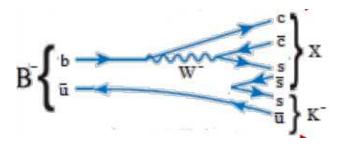
□ The best fit has $J^P = 3/2^-$ and $J^P = 5/2^+$. □ Good description of the angular distributions. □ Measure the real and imaginary parts of the P_c amplitudes (PRL 115, 072001 (2015)). □ Argand Diagram consistent with expectations from a Breit-Wigner behaviour.


□ Model independent analysis gives consistent results (Phys. Rev. Lett. 117, 082002 (2016)). □ The study of $\Lambda_b^0 \to J/\psi p\pi^-$ gives consistent results (Phys. Rev. Lett. 117, 082003 (2016)).

Results on $B^+ \to J/\psi \phi K^+$ from LHCb

□ The X(4140) state is first claimed by the CDF collaboration in 2008. (PRL 102 242002). □ Narrow width: $\Gamma = 11.7^{+8.3}_{-5.0} \pm 3.7$ MeV. Later more experimental results.

- \Box Use Run1 data $(3fb^{-1})$ (PRL118, 022003 (2017), PRD95, 012002 (2017)).
- \Box Six dimensional amplitude analysis.


 \Box The best fit requires the presence of four X states and a non-resonant term.

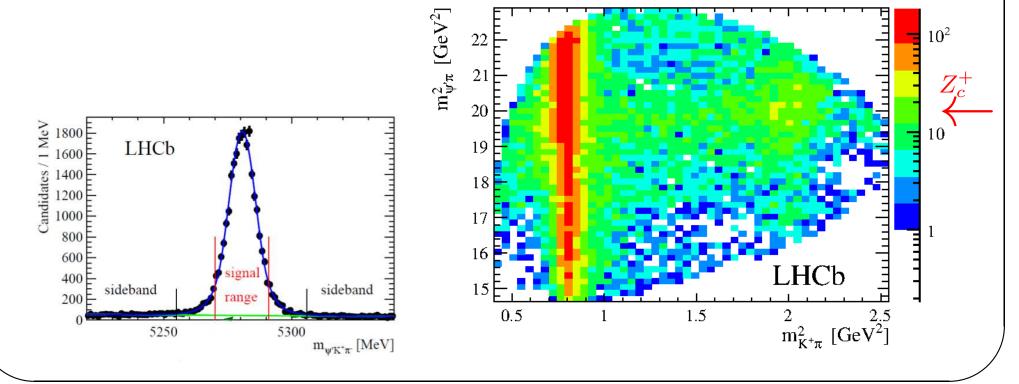
	New re	sults	on B^-	$^+ \to J/\psi \phi K^+$ fr	om LHCb
Resonances p	parameters ((PRL118	, 022003	(2017)).	
		σ	JPC	<i>M</i> (MeV)	Γ (MeV)
	<i>X</i> (4140)	8.4	1++	4160 ± 4 ⁺⁵ ₋₃	83±21+21 -14
	X(4274)	5.8	1++	4273±8 ⁺¹⁷ ₋₄	56±11+8 - 11
	<i>X</i> (4500)	6.1	0++	$4506 \pm 11^{+12}_{-15}$	92±21+21 -20
	<i>X</i> (4700)	5.6	0++	$4704 \pm 10^{+14}_{-24}$	$120 \pm 31^{+42}_{-33}$

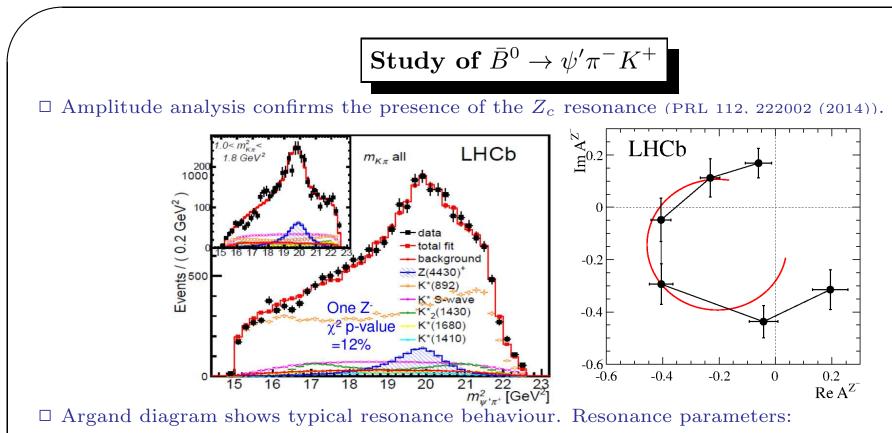
 \Box The X(4140) is not a narrow resonance.

 \Box A possible diagram for producing a 4-quark state.

 \square Lot of discussions. Interpretation of these states still open.

Study of $\bar{B}^0 \to \psi' \pi^- K^+$ in LHCb

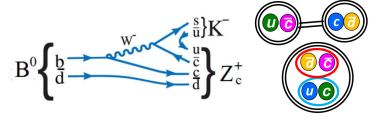

 \Box First analysis from Belle: observation of a new $Z_c(4430)^+ \rightarrow \psi' \pi^-$ in $B \rightarrow K \pi^+ \psi'$ (PRL 100, 142001 (2008)).


 \square Not confirmed by BaBar: data could be described without the presence of a

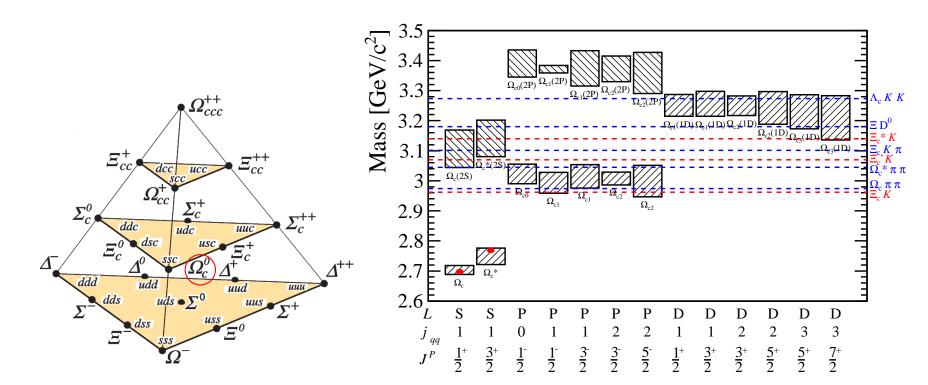
 $Z_c(4430)^+$ resonance (PRD 79, 112001 (2009)).

 \Box Recent analysis from LHCb (PRL 112, 222002 (2014)).

 $\square B^0$ signal: 25,176 events (Belle: 2,010, BaBar: 2,021 events).



$$M(Z_c) = 4475 \pm 7^{+15}_{-25} MeV, \ \Gamma(Z_c) = 172 \pm 13^{+37}_{-34} MeV.$$


 \Box In good agreement with Belle.

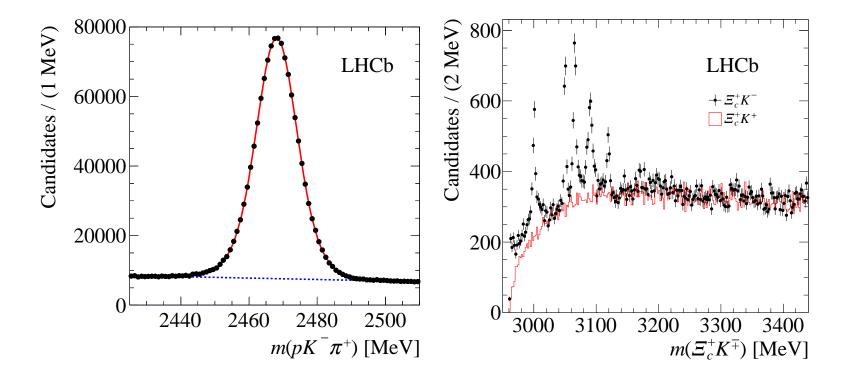
- \square Possible presence of an additional Z_c at a mass of 4239 MeV.
- $\Box Z_c$ is a charged charmonium state. Multiquark state?

Baryon spectroscopy

 \Box Heavy quark effective theory (HQET) predictions for Ω_c states.

 $\Box \ \Omega_c \text{ quark content: } ssc.$ $\Box \ \text{Only } 1/2^+ \text{ and } 3/2^+ \text{ ground states were known.}$

Observation of five new Ω_C states in LHCb

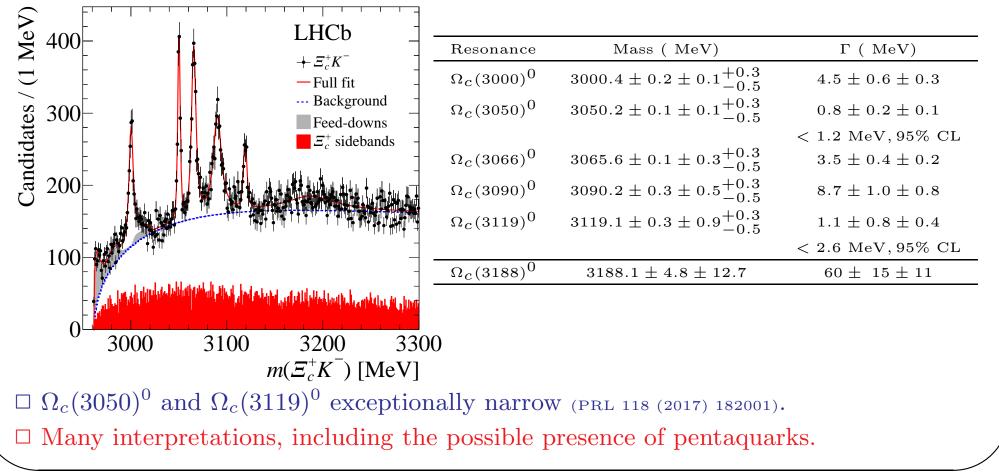

□ Explore excited Ω_c states in their strong decay to $\Xi_c^+ K^-$ (PRL 118 (2017) 182001). □ Make use of data collected at 7,8 and 13 TeV (3.3 fb^{-1}).

 $\Box \Xi_c^+$ reconstructed in the Cabibbo suppressed mode $\Xi_c^+ \to p K^- \pi^+$.

 $\Box \approx 10^6 \ \Xi_c^+$ reconstructed with a 83% purity.

 $\Box \Xi_c^+$ combined with a prompt K^- : five narrow Ω_C observed.

 \square No structure in the Ξ_c^+ sidebands or in the wrong sign $\Xi_c^+ K^+$ mass spectrum.

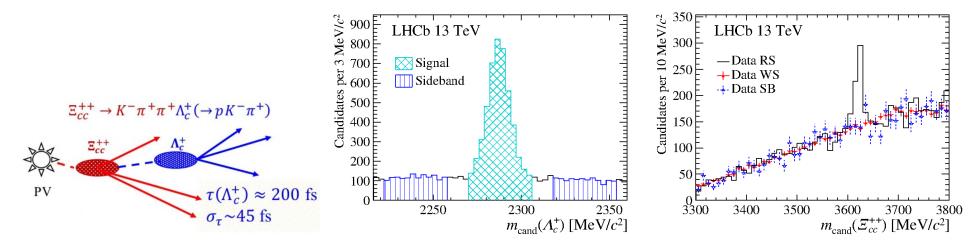


Observation of five new Ω_C states

 \Box Describe peaks with relativistic Breit-Wigner convoluted with Gaussian with σ from 0.7 to 1.7 MeV.

 \Box Account for feed-down from $\Omega_c \to K^- \Xi'_c (\to \Xi_c \gamma)$.

 \square Model enhancement at ≈ 3200 MeV with one Breit-Wigner.



Observation of the double charmed baryon Ξ_{cc}^{++} in LHCb

 \Box Search for the Ξ_{cc}^{++} (ucc) using the decay (Phys. Rev. Lett. 111 (2017) 180001).

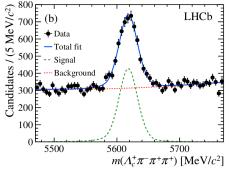
$$\Xi_{cc}^{++} \to \Lambda_c K^- \pi^+ \pi^+, \quad \Lambda_c \to p K^- \pi^+ \ (BR = 10\%)$$

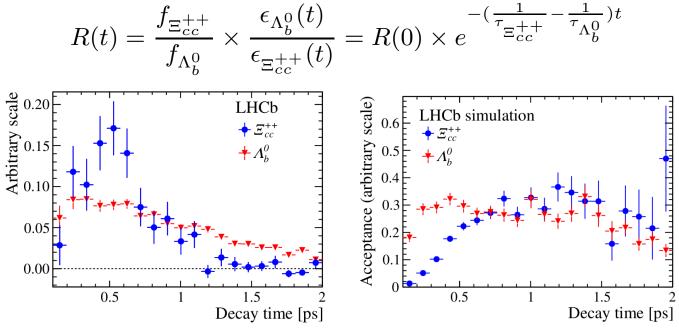
 \Box Analyze 1.7 fb^{-1} of Run2 using a dedicated high efficiency trigger.

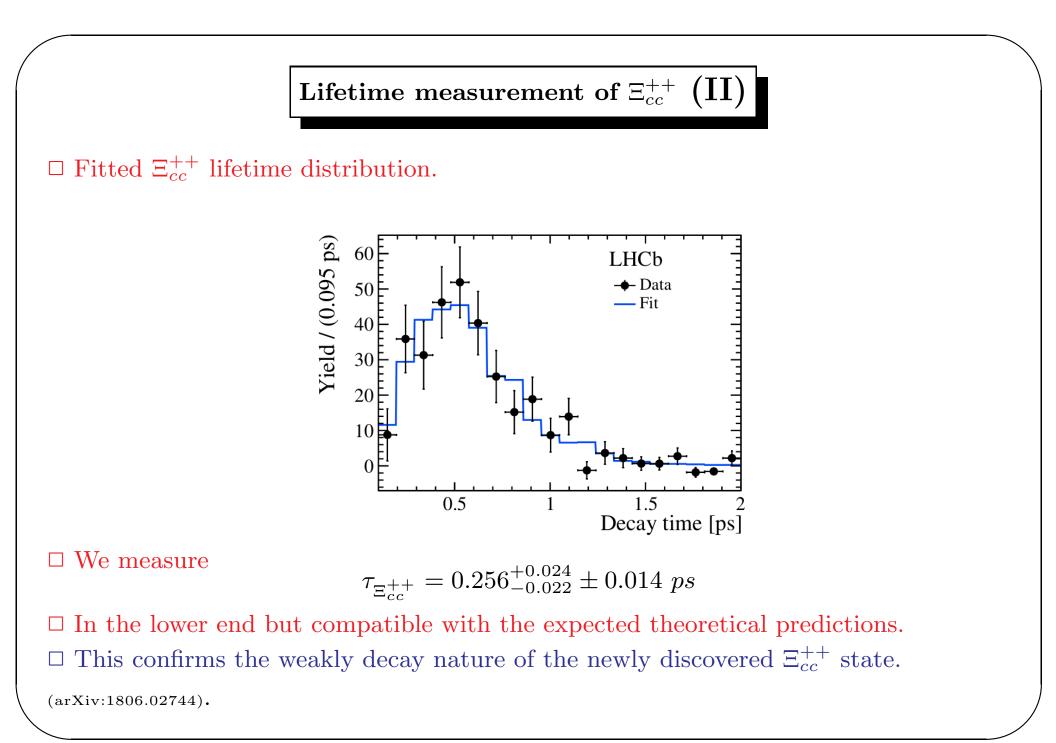
 \Box First observation.

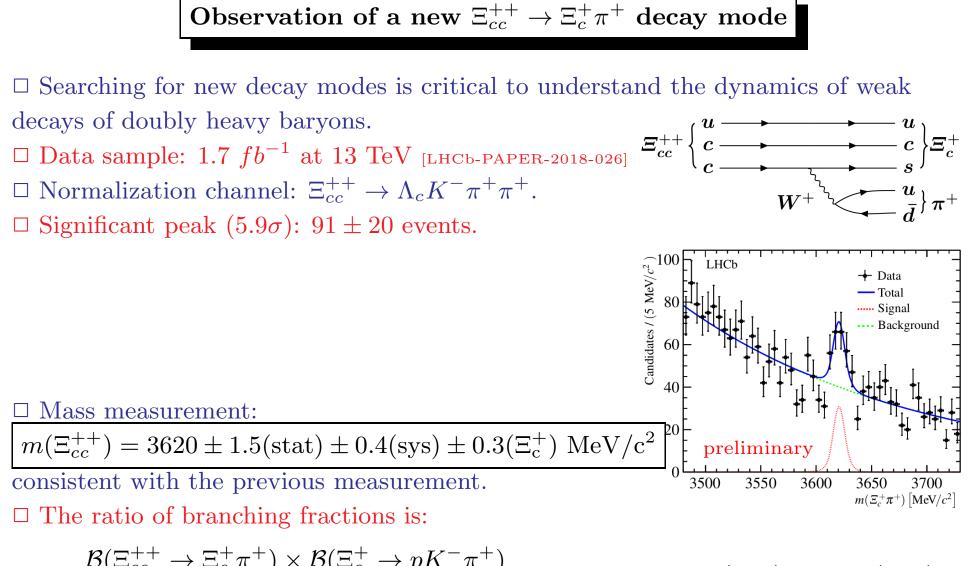
 \Box No signal observed in the Λ_c sidebands, no signal in the wrong sign $\Lambda_c K^- \pi^+ \pi^-$ combination.

 \Box Consistent signal also observed in the Run1 data.


Observation of the double charmed baryon Ξ_{cc}^{++} Significance > 12σ (Phys. Rev. Lett. 111 (2017) 180001). Yield 313 ± 33 decays. Candidates per 5 MeV/c² 180LHCb 13 TeV 160+Data 140 – Total dcc120 Signal ---Background 100 Σ_{c}^{+} 80 ddc иис dsc 60 40 n 20 udd uud uds Σ^{-} dds Σ^+ uus 0 3600 3700 3500 $m_{\rm cand}(\Xi_{cc}^{++})$ [MeV/c²] $\Box \Xi_{cc}^{++}$ parameters. $m(\Xi_{cc}^{++}) = 3621.40 \pm 0.72(stat) \pm 0.27(syst) \pm 0.14(\Lambda_c)MeV$ Mass difference with respect to the possible SELEX isospin partner (Ξ_{cc}^+) : $103 \pm 2 \text{ MeV}$ (PRL 89 (2002) 112001, PLB 628 (2005) 18) \Box Inconsistent with expected isospin splitting for Ξ_{cc}^+ .


Lifetime measurement of Ξ_{cc}^{++} (I)


 $\Box \text{ We perform a } \Xi_{cc}^{++} \text{ lifetime measurement relative to that of the } \Lambda_b^0 \to \Lambda_c^+ \pi^- \pi^+ \pi^- having the same topology (arXiv:1806.02744).$


 $\Lambda_b^0 \text{ signal} \rightarrow$

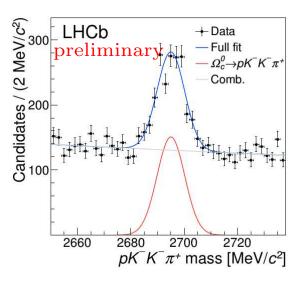
 \Box Unbinned maximum likelihood fit to the background subtracted (sFit) Ξ_{cc}^{++} decay time distribution.

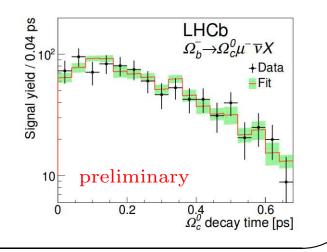
$$\frac{\mathcal{B}(\Xi_{cc} \to \Xi_c \pi^-) \times \mathcal{B}(\Xi_c \to pK^-\pi^+)}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c K^- \pi^+ \pi^+) \times \mathcal{B}(\Lambda_c \to pK^- \pi^+)} = 0.035 \pm 0.009 \text{(stat)} \pm 0.003 \text{(syst)}$$

Measurement of the Ω_c baryon lifetime

 \Box Charm baryon lifetimes are known much less precisely than charm meson ones.

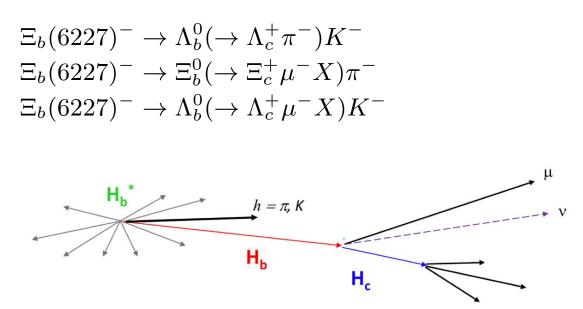
 \Box The expected lifetime hierarchy should be:

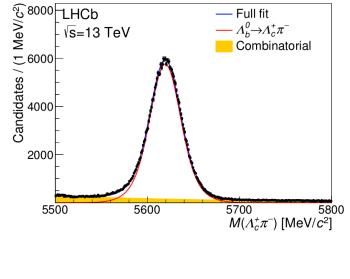

 $\tau_{\Xi_c^+} > \tau_{\Lambda_c^+} > \tau_{\Xi_c^0} > \tau_{\Omega_c^0}$ and current measurements are consistent with this. $\Box \text{ We use semileptonic } \Omega_b^- \to \Omega_c^0 \mu^- \bar{\nu}_\mu X$ with $\Omega_c^0 \to p K^- K^- \pi^+$ [LHCb-PAPER-2018-028]. $\Box \text{ To reduce uncertainties we measure the ratio with respect to the } D^+ \to K^- \pi^+ \pi^+ \text{ lifetime.}$


 \Box Dataset: 3 fb^{-1} . Measured lifetime:

 $\tau_{\Omega_c^0} = 268 \pm 21_{\,\rm (stat)} \pm 10_{\,\rm (syst)} \pm 2_{D^+} \,\, fs$

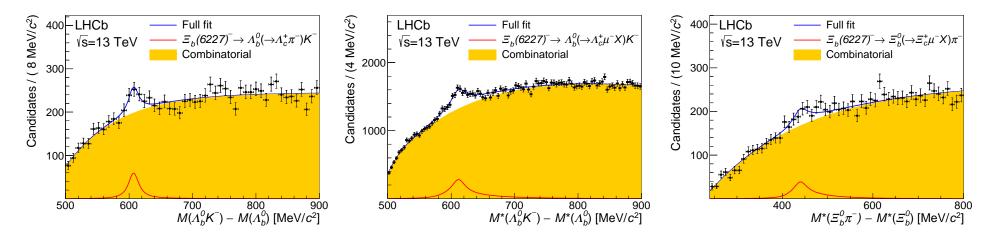
□ Four times larger than and inconsistent with the world average value of (69 ± 12) fs.
□ With this measurement:


$$\tau_{\Xi_c^+} > \tau_{\Omega_c^0} > \tau_{\Lambda_c^+} > \tau_{\Xi_c^0}$$



Observation of a new Ξ_b^- resonance (I).

□ New $\Xi_b(6227)^-$ state observed decaying to both $\Xi_b^0 \pi^-$ and $\Lambda_b^0 K^-$ (arXiv:1805.09418). □ Dataset: 1.0 fb^{-1} (7 TeV) + 2.0 fb^{-1} (8 TeV) 1.5 fb^{-1} (13 TeV). □ Three independent reconstructed decay chains:


 \Box Semileptonic decays have branching fractions 10-20 times larger.

 \Box The missing p_{ν} momentum is reconstructed assuming a zero-mass particle that balances the momentum transverse to the direction of Λ_b^0/Ξ_b^0 .

 \Box The total invariant mass is constrained to have the known Λ_b^0/Ξ_b^0 mass.

Observation of a new Ξ_b^- resonance (II).

 \Box The new resonance is observed in three different mass spectra.

 \Box Similar signals observed in the 7/8 TeV data.

 \square Resonance parameters

$$\begin{split} m_{\Xi_b(6227)^-} &- m_{\Lambda_b^0} = 607.3 \pm 2.0 \,(\text{stat}) \pm 0.3 \,(\text{syst}) \,\text{MeV}/c^2, \\ \Gamma_{\Xi_b(6227)^-} &= 18.1 \pm 5.4 \,(\text{stat}) \pm 1.8 \,(\text{syst}) \,\text{MeV}/c^2, \\ m_{\Xi_b(6227)^-} &= 6226.9 \pm 2.0 \,(\text{stat}) \pm 0.3 \,(\text{syst}) \pm 0.2 (\Lambda_b^0) \,\text{MeV}/c^2, \end{split}$$

 \Box The new state could be $\Xi_b(1P)$ or $\Xi_b(2S)$.

(arXiv:1805.09418)

Conclusions

 \Box LHCb is a flavor factory, exploring a large set of physics topics.

 \Box In particular, in the spectroscopy field, many new unexplored regions are being studied.

 \Box These studies are producing unexpected results, such as the discovery of "exotic" states, or the observation of many unexpected resonances and particles.

 \Box Basic ingredients of these results are high statistics and purity of the final states and highly sophisticated and newly developed full amplitude analyses.

 \Box This field is in rapid development and much more experimental and theoretical work is needed to understand the full pattern.

 \Box Many more analyses are underway, making use of the large amount of data which are being collected at LHC.