

The Upgrade of the CMS Tracker for Super-LHC

Katja Klein RWTH Aachen University For the CMS Tracker Collaboration

9th International Conference on Large Scale Applications and Radiation Hardness of Semiconductor Detectors Florence, October 2nd, 2009

The Super-LHC (SLHC)

	LHC	SLHC Phase-1	SLHC Phase-2
Peak luminosity	10 ³⁴ cm ⁻² s ⁻¹	2-3 x 10 ³⁴ cm ⁻² s ⁻¹	10 ³⁵ cm ⁻² s ⁻¹
Integrated luminosity	$\approx 50 \text{fb}^{-1}/\text{y}$	≈ 100-200fb⁻¹/y	$\approx 500 \text{fb}^{-1}/\text{y}$
Start-up	$2009 = t_0$	t ₀ + 4-5 years	t_0 + 10 years

Needs upgrade of LHC injector chain and interaction regions (IR):

Phase-1 (civil engineering started):

- Linac2 (50MeV) \rightarrow Linac4 (160MeV)

Phase-2 (approval expected for 2011):

- Booster (1.4GeV) \rightarrow LPSPL (4GeV)
- PS (25GeV) \rightarrow PS2 (50GeV)
- enhancements to SPS (450GeV)

Motivations:

- Physics
- Radiation damage to LHC components (IR quadrupoles) and detectors
- Age of LHC injector chain (1959-1978)

The Current CMS Tracker

- Silicon pixel detector and silicon micro-strip tracker
- Organized in barrel and end caps
- Located inside B = 3.8T solenoidal field
- Pixel must be exchanged after 2 years at design luminosity

2.5m

- note: this can be done in standard shutdowns
- Strip tracker designed to withstand 10 LHC-years
 - 500fb⁻¹: fluence $\approx 1.6 \cdot 10^{14} n_{eq}/cm^2$, dose $\approx 70 kGy$

Katja Klein

5.8m

Upgrade of the CMS Tracker for SLHC

Phase-1 Pixel Upgrade

- Strip tracker stays untouched
- Pixel detector will be exchanged due to radiation damage
- Changes to Pixel detector layout
 - Four barrel layers at 3.9, 6.8, 10.9, **16.0** cm
 - Three forward disks per side

Technological improvements, no radical changes

- Binary-coded sparsified serial readout at 160/320MHz
- Modifications to periphery of PSI46 ROC: ADC, increased depth of buffers, ...
- New, lightweight mechanics
- Evaporative CO_2 cooling system instead of monophase C_6F_{14}
- DC-DC conversion powering scheme

Todays' Pixel Detector:

- 66 million pixels, 1m² of silicon
- Cell size: 100μm (rφ) x 150μm (z)
- n⁺-in-n sensors

- ...

Most subdetectors of CMS are expected to survive and perform well at SLHC \Rightarrow upgrades of trigger electronics and DAQ "only"

Exception: The Silicon Tracker

• Need to adapt to SLHC radiation level, in particular silicon sensors

- For 3000 fb⁻¹ at r = 4 (22) cm: fluence \approx 19 (1) x $10^{15}\,cm^{-2}$ & dose \approx 5 (0.4) MGy
- Pile-up increases from ~ 20 events to 300-400 events per bunch crossing \Rightarrow up to 20 000 particles in the tracker
 - \Rightarrow higher granularity needed to keep occupancy at 1% level
- Keep L1 trigger frequency at 100kHz \Rightarrow tracker data must be fed into L1 trigger

Physics Requirements

- To fully exploit SLHC potential, performance must be preserved, if not improved
- Maintain tracking and vertexing performance, in a more challenging environment
- Excellent instrument \rightarrow (expected) intrinsic spatial & p_T resolutions seem adequate
- However, detector suffers from its own material
 - multiple scattering (→ spatial resolution),
 Bremsstrahlung (→ energy resolution),
 photon conversions,
 hadronic interactions (→ detection efficiencies)
 - this drives many R&D areas (more details later)
 - \checkmark novel powering and cooling systems
 - \checkmark reduced redundancy in layout
 - ✓ power savings in layout & electronics (today: pixels ~ 3.6kW/m², strips ~ 0.2kW/m²)

Track Trigger

- Currently, tracker information is used only in High Level Trigger (HLT)
- Reduction of L1-trigger rate by increasing thresholds not feasible (+ lose physics)
- Tracker info helps: improved p_T -resolution, e^- matching, isolation, primary vertex identification
- Cannot read out full tracker data within latency (6.4µs)
- \Rightarrow Identify "high-p_T" tracks (~ 5% for p_T < 2-3GeV) and ship this data out only

- High-p_T tracks are more straight \Rightarrow compare hit patterns in close layers ("stacks")
- Needs pixelated detector layers

Lower sensor

rφ

- Discrimate on-chip between low and high- p_T tracks based on cluster width
- Tracks within ϕ -slices are reconstructed off-detector in FPGAs (e.g. Associative Memory chip) for L1

Pros:

Cons:

- Can use "classic" strip modules (low power, cost) - No correlation between modules needed \rightarrow simple

Outer Tracker Layout

- Current layout with 10 barrel layers guarantees robust and redundant tracking
- Define future layout based on systematic detector simulations (big task!)
- Two "strawman" layouts with p_T -layers have cristallized and are being studied

- Minimalistic trigger configuration combined with "classical" outer tracker
- Two types of modules needed (some details later)

- 3 + 2 stacked layers organized as 5 double-stacks (= 12 sensor layers at η = 0)
- All-pixel tracker: ~ $300m^2$ active area with ~ $100\mu m x 1mm$ pixels
- Estimated FE-power consumption: O(100kW)
- Data volume and cost higher than for Hybrid Layout

- Sensor separation defines p_T cut (for fixed search window)
- Transition region (i.e. efficiency between 0% and 100%) broadens with separation

Reduction

factor

9.2

22.0

37.0

54.4

Outer Tracker Module (First Ideas)

Design not decided. Finite Element analysis of mechanical & thermal properties started.

- Proposed successor of APV25: "CMS Binary Chip (CBC)" in 130nm CMOS
- **Binary unsparsified readout:** lowest power; synchronous; constant data volume
- Power per channel ~ 0.5mW (simulation for $C_{sensor} = 5pF$)
- Compatible with both signal polarities, DC & AC coupling
- Challenges: noise immunity, fewer diagnostics, binary position resolution

- **Two stacked sensors** a 2.56cm x 8cm with 2.5mm x 100µm pixels
- Read-out chips for 2 x 128 columns, coarse pitch bump-bonding to sensor
- Hits are transferred to chip edge (0.5% occupancy, 10bit bus @ 40MHz)
- Hit patterns & address of stacked sensors are compared in correlator ASIC
- Rough FE-Power estimate: 100µW per pixel (~ doubles if link power included)
- Stress on easy prototyping to assess soon feasibility of concept in test beams

Trigger Module Prop. #2: Vertically Integrated Module

- Stacked modules with 85cm² a 100µm x 1mm pixels
- Data not transferred to edge, but **direct communication** of stacked sensors through vias in "interposer" layer
- 3D electronics integration with Through-Silicon-Vias
- Large power and band width requirements
- New exciting technologies; feasibility yet to be proven

Sensor R&D for Phase-2

R&D with HPK for technology evaluation

- Wafers with multi-geometry pixel & strip areas, test structures, etc.
- Huge phase space to be explored:
 - p-in-n-FZ (100µm, 200µm, 300µm)
 - p-in-n-MCz (200µm)
 - n-in-p-FZ (100µm, 200µm, 300µm)
 - n-in-p-MCz (200µm)
 - p-in-n EPI (75µm, 100µm)
 - n-in-p EPI (75µm, 100µm)
 - for n-in-p: p-spray and p-stop
 - additional double metal layer for integrated pitch adapter
- Extensive irradiation (p, n) and testing campaign being set up

Power & Cooling

- Tracker services (pipes, fibres, cables) follow complicated routes;
 exchange not practicable (impact on ECAL...) ⇒ major constraint for the Upgrade
- Plan to move from monophase C₆F₁₄ cooling to two-phase CO₂ cooling
 - Evaporates at high pressure \rightarrow low vapour volume \rightarrow thin pipes
 - High latent heat $\rightarrow\,$ lower sensor temperatures can be reached
- Might need more power than today, at higher current \rightarrow larger cables losses ~ I² \Rightarrow move to a DC-DC conversion powering scheme
 - Bring power into detector at higher voltage but lower current \Rightarrow lower cable losses
 - Switching devices with air-core inductors \rightarrow R&D to minimize noise

Summary

Phase-1: Exchange of pixel detector

- 4 layers + 3 disks
- Improved detector: read-out, CO₂ cooling, DC-DC conversion, lower material budget

Phase-2: Exchange of whole tracker

- Track trigger requirement drives detector design
- Try to improve performance by saving material
- A lot of R&D ongoing: sensors, readout chips, DC-DC conversion, CO₂ cooling, ...
- Several suggestions for overall layout and module design exist
- Need to explore them better before convergence can be reached
- Aim for Technical Design Reports for Phase-1/2 in 2010/2012

Back-up Slides

Physics Potential of the SLHC

Higher statistics improves accuracy and extends discovery reach by ~ 20-25%:

- Higgs physics
 - Rare decays; 25% error on Higgs self-coupling (M_H=200GeV)
- Super-Symmetry
 - Discovery reach for squarks & gluinos extends from 2.5TeV to 3TeV
- Exotica
 - Discovery reach for new gauge bosons (Z': 5.3TeV \rightarrow 6.5TeV), KK excitations etc.
- Electroweak physics
 - E.g. factor 2-3 higher accuracy for triple & quartic gauge boson couplings
- + simply reduce time to half statistical error!

H

000000

000000