

Introduction

- CMS tracker
- Tracker Alignment: methods and strategies
- Results from complete tracker alignment exercise with cosmic ray data from 2008
- Analysis of remaining misalignment
- Latest alignment results from the cosmic ray data taking in 2009
- Summary & Outlook

CMS Silicon Tracker(1)

CMS Silicon Tracker(2)

- 1d-modules(single): sensitive coordinate in u (rφ barrel, φ endcaps)
- 2d-modules(double): rφ- + stereomodule-unit rotated by 100mrad around local y
- 16588 modules x 6dof = O(10⁵) parameters → alignment challenge

Alignment parameters per module (barrel/endcaps)

Track Based Alignment

- Use tracks to determine 'real' module position via minimisation of track residuals (r = $x_{track} x_{hit}$)
- Global χ² depends on local track parameters q and global alignment parameters (module positions) p = parameters of interest

• <u>Global method Millepede II (V.Blobel):</u>

- + includes module correlations
- + only a few iterations necessary (internal outlier rejection)
- CMS used simplified track model, but more realistic models available
- Local method HIP:
 - + information from survey measurements included
 - + same track model (Kalman) as for CMS track reconstruction
 - module correlations ignored
 - large number of iterations necessary to account for loosely connected parts of the tracker
- Both algorithms were used in a hierarchical multi-step approach (large detector structures → module level(separate alignment of 2dmodule units = large impact on alignment precision))
- Combined method: HIP on top of Millepede II

- Cosmic ray data in 2008 used for alignment:
 - about 3.2Mio. tracks from cosmic muons with magnetic field on
 - Different illumination of the various detector parts, sufficient statistics in most of the barrel and good track quality for modules hit vertically
 - Hit fraction in pixel barrel 3%, in the pixel endcaps 1,5%
- Normalized χ^2 before and after the alignment for the global and local method + their combination (local method applied on top of the global method (best performance))

UН

H I

Alignment Validation: Residual Distributions

UH

250

 v'_{pred} - v'_{hit} [µm]

500

Subucteetoi	non-anglieu	giobai	local	combined	modules
(coordinate)	[μ m]	[μ m]	[μ m]	[μ m]	>30 hits
PXB(u')	328.7	7.5	3.0	2.6	757/768
PXB (v')	274.1	6.9	13.4	4.0	131/100
PXE(u')	389.0	23.5	26.5	13.1	301/672
PXE(v')	385.8	20.0	23.9	13.9	391/072
TIB (u')	712.2	4.9	7.1	2.5	2623/2724
TOB (u')	168.6	5.7	3.5	2.6	5129/5208
TID (u')	295.0	7.0	6.9	3.3	807/816
TEC (u')	216.9	25.0	10.4	7.4	6318/6400

MC combined method:

- Use the alignment geometry (comb.meth) as start geometry on MC and align back
- Estimate/approximation of remaining misalignment achieved with a standalone cosmic alignment

subdetector	combined	combined	ideal
(coordinate)	[μ m]	MC [μm]	ΜC [μm]
PXB(u')	2.6	2.1	2.1
PXB(v')	4.0	2.5	2.4
PXE (u')	13.1	12.0	9.4
PXE (v')	13.9	11.6	9.3
TIB (u')	2.5	1.2	1.1
TOB (u')	2.6	1.4	1.1
TID (u')	3.3	2.4	1.6
TEC (u')	7.4	4.6	2.5

pred

- Overlapping modules in one layer \rightarrow 2 hits with only small amount of material in between + small uncertainties from track extrapolation
- Measure the accuracy of the track prediction excluding the overlap hits via the double-difference between the hit postions $\Delta x_{\text{bit}} = \Delta x_{\text{bit}} - \Delta x_{\text{bit}}$ and the track predictions $\Delta x_{pred1} = \Delta x_{pred1} - \Delta x_{pred2}$

- Split cosmic track along the distance of closest approach to the nominal beamline
- Select only tracks with 3 pixel hits per leg
- Refit bottom and top part separately and compare resulting track parameters

High level validation: Cosmic Track Splitting

30/09/09

UH

Ĥ

Jula Draeger RD09

13

Systematic misalignment effects: Weak modes

- Starting from aligned geometry (global method data)
- Add some systematic misalignment on top of the aligned geometry
- Rerun alignment procedure with the same tracks as before

Artificial misalignment can not be recovered completely using only tracks from cosmic rays \rightarrow need for complementary datasets (tracks coming from the beamspot, beam halo)

UΗ

řî ř

First Results from Cosmic Ray Data in 2009

- Distributions of the median of the residuals for TIB and TOB using cosmic ray data from 2009
 - Geometry gained from 2008 alignment exercise still valid for strip barrel
 - Alignment results improve with cosmic ray data taking in 2009
 - Caveat: CRAFT09 not statistically independent

Ш

Ĥ

- Pixel detector was removed and reinstalled between data taking in 2008 and 2009
 - 2008 geometry shows different shape (mean shifted especially in v coordinate)
 - Recovered after alignment with cosmic ray data from 2009

Modules Modules 400 RMS [um] Geometry Geometry RMS [um] CRAFT08 CRAFT08 CRAFT09 dec 3.8 CRAFT09 dec 2.5 300 200 u-coordinate v-coordinate 200 100 100 **Pixel Barrel** ഹിഗിപ -0.005 0.005 0.005 -0.005 $<\Delta v'>$ [cm] <∆u'> [cm]

Distribution of the median of the residuals

Distribution of the median of the residuals

- CMS full tracker alignment with cosmics
 - Challenging task (16588 modules)
 - Separate 2d-module alignment improved the alignment results significantly
 - Complementary alignment methods (local and global) show best results in combination
 - Powerful/flexible validation tools in place
- alignment exercise with data taken in 2009 ongoing
 - First results indicate confirmation/improvement of the results using data from 2008
- Remaining misalignment/weak modes need complementary data from the beamspot or beamhalo
- We are looking forward to November 2009!

THANKS!

Backup: Motivation for separate 2d-module alignment

- 2d-modules aligned as one led to large movements of the modules within a string/rod compared to survey measurements
- Necessity of separate module-unit alignment for 2d modules

- Check that correction in dw of module-units in 2dmodules do not swap place (2mm in TOB, less in TIB)
- Not seen in CRAFT data

MC comb. method geometry as an equivalent/approximation of the remaining misalignment

- High p_T muons from beamspot to investigate influence of remaining misalignment on track parameters
- Alignment procedure run without fixed reference point → alignment object is centred afterwards
- Choice of reference:
 - Strong dependence of track parameter from pixel
 - Pixel as reference system shows less impact on track parameters

UН

Ĥ

- MC combined geometry as an equivalent/approximation of the remaining misalignment
- p_T is independent of centering reference
- Diminution of performance in comparison to ideal due to remaining misalignment
 - Nonuniform illumination → detector parts with low statistics
 - χ² invariant detector distortions not sensitive to cosmic rays → weak modes

UH

H.

Comparison of Geometries: impact parameters and angles

