

Commissioning and Alignment of the ATLAS Inner Detector using Cosmic Data

Daniel Kollár CERN Beniamino Di Girolamo Commissioning of the ATLAS Pixel Detector with Cosmic Data Sep 30, 9:15

Nick Barlow Operation of the ATLAS Semiconductor Tracker Sep 30, 10:30

On behalf of ATLAS Collaboration

RD 2009 Florence, Italy, Sep 30 – Oct 2, 2009

The ATLAS detector at the LHC

ERN

Detector	Туре	Modules	Channels	Intrinsic resolution
Pixel	silicon pixel modules	1774	~80M	10 μm (rφ), 115 μm (rz)
SCT	silicon micro-strip detectors	4088	~6M	17 μm (rφ), 580 μm (rz)
TRT	straw drift tubes	176	~350k	130 μm (rφ)

RD09, Florence, Italy, Sep 30th, 2009

Daniel Kollár, CERN

- Sept to Dec 2008
- several hundred million cosmic events in ATLAS collected in various detector configurations
- with and without B field
- using tracking in level 2 trigger boost of Inner Detector tracks
- Inner Detector track statistics:

Magnetic field	OFF	ON
All InDet tracks	4.9M	2.7M
SCT tracks	1.2M	880k
Pixel tracks	230k	190k

Cosmic events in the Inner Detector

B field OFF

B field ON

Commissioning with cosmics:

- debugging of the experiment \rightarrow fixing problems
- calibration and alignment
- performance studies
- gain operational experience

PREPARATION FOR THE COLLISIONS

- **GOAL:** degradation of resolution on track parameters should be < 20%
- ultimate precision can be reached using track-based alignment algorithms
- alignment is based on the minimization of track-hit residuals ${\it r}$

$$X^2 = \sum_{\text{tracks}} r^T V^{-1} r$$
 where $r = r(\pi, \alpha)$

- \boldsymbol{V} track covariance matrix
- π track parameters
- lpha alignment parameters

• solution
$$\frac{\mathrm{d} \chi^2}{\mathrm{d} \alpha} = 0$$

Global X²

- single large matrix including all the correlations
- for 6 degrees-of-freedom per module and N modules requires solving of linear system of 6N parameters $\rightarrow \sim 40,000$ for the full Inner Detector
- requires usage of fast solving techniques
- Local χ^2 solving of N linear systems of 6 parameters, ignoring explicit correlations between modules,
 - correlations are restored via iterations, needs many iterations
- **Robust** uses overlap residuals between modules

Alignment procedure

Alignment sequence

Alignment implementation

- currently alignment implemented separately for Silicon and TRT
- needs to be run sequentially not possible to align Silicon and TRT at the same time
- new alignment code with extra functionality is being tested (allows alignment of Si + TRT at the same time)
- goal is to have it ready for the data taking

- aligning large structures first
 - expected largest misalignments, smaller statistics needed, smaller system to solve
- adding degrees-of-freedom depending on expected misalignments given by the construction
- limited illumination of the detector taken into account
 - cosmic tracks mostly vertical \rightarrow end-caps and sides of the barrel have limited statistics

Silicon:

- relative subsystem alignment
 - Pixel, SCT barrel, 2 x SCT end-cap
- barrel layer/half-shell alignment
- end-cap disk alignment
- barrel stave alignment
- barrel module alignment

TRT:

- TRT barrel + 2 x TRT end-cap
- barrel module alignment

Residual distributions - Silicon

- 2008 cosmic-ray data
- using mixture of B-on and B-off data
- obtained consistent set of alignment constants for the Inner Detector
- significant improvement of residual distributions after alignment
- no offset, width close to what is expected from MC with perfectly aligned geometry

- residual distribution for 2009 cosmic data obtained using 2008 aligned geometry
- difference only few microns → detector stable

- significant improvement after alignment and consistency between 2008 and 2009 cosmic also seen in the TRT
- slightly worse resolution in 2009 is expected
 - using Argon instead of Xenon

Tracking performance

- cosmic tracks cross both upper and lower hemisphere of the Inner Detector
- tracks are split into upper and lower half
- two **collision-like tracks** are refitted separately as independent tracks
- track parameters are compared at the perigee
- provides direct measurement of the track parameter resolution and bias
- huge improvement after alignment
- remaining small biases are being investigated

RD09, Florence, Italy, Sep 30th, 2009

Daniel Kollár, CERN

- comparison of track parameter resolution between Silicon-only tracks and full Inner Detector tracks as function of p_{τ}
- resolutions are better when TRT is included
 - many more hits
 - bigger lever-arm
- good starting point for collisions

- low p_{τ} region
 - dominated by multiple scattering
- high p_{τ} region
 - dominated by intrinsic resolution and misalignments

RD09, Florence, Italy, Sep 30th, 2009

- systematic deformations which don't change the χ^2 of the track but systematically bias the track parameters
- studies of physics impact of weak modes are ongoing
- example: Curl → introduces momentum bias
- impact of Curl deformation on the reconstructed mass of the di-muon pair from $Z \rightarrow \mu\mu$ decay
 - Curl-Large : 300 μ m at outermost layer
 - Curl-Small : after alignment with collision data only
 - difference to ideal is consistent with residual misalignment of 20 μ m
- cosmic tracks help remove the weak modes
- further handles on weak modes:
 - beam halo events
 - survey, vertex and beam spot constraints
 - E/p asymmetry for e^+ and e^-
 - physics signatures, e.g. $Z \rightarrow \mu\mu$, $J/\psi \rightarrow \mu\mu$

Daniel Kollár, CERN

- The ATLAS Inner Detector has been commissioned with 2008 cosmic data
 - gained operational experience, performed calibration and alignment, performance studies
 - after alignment the tracking performance very good
 - good starting conditions for the collision data
- 2009 cosmic data taking
 - checked stability of the alignment
 - still ongoing further improvements are expected
- Waiting for collision data
 - needed for further improvements in detector understanding
 - expected fast improvement of the alignment, especially for the end-caps and for the weak modes

ATLAS Inner Detector is well prepared for the first collisions.