High efficiency readout architecture for a large matrix of pixels

RD09 – Firenze, 10/02/2009

A. Gabrielli, **F.M. Giorgi**, M. Villa for the **VIPIX** collaboration INFN & University of Bologna

Outline

- Expected Conditions
- Matrix overview
- Readout architecture
- Slow control interface
- Simulations
- Efficiencies
- Test Chip submission Sept. 09

Expected conditions

- 100 MHz/cm² hit rate
- 0.25 2.0 µs BCO clock:
 - Time Counter clock, represents the time granularity of the events.
- 60-100 MHz Matrix Read Clock
- 3 Gbit/s data bus bandwidth per chip

Submatrix Scan Policy

The Macro Pixels

- Matrix divided into MPs: group of pixels (2x8)
 - MP global lines:

- **Fast-OR line:** (MP output) inclusive OR of all pixel latches.
- Freeze line: (MP input) disable the reception of new hits.
- On BCO clock edge all MPs with active fast-OR :
 - Gets frozen
 - Are associated to the current value of BCO counter (Time Stamp)
 - Waits to be scanned and reset

Sub-matrix readout architecture

The sparsifiers and barrels

Output stage solutions

- FULL resolution Hit + time stamp
 - 8 bit TS (modulo 256 BCO counter)
 - 9 bit X address (320 pixels)
 - 8 bit Y address (256 pixels)
 - TOT 25 bit
 - \rightarrow expected rate 130 MHit/s per chip = 130MHz x 25bit = <u>3.2 Gbps</u>
- Zone sparsification & time sorting of the hits (TS heading the relative hits, 1 MHz BC clock) lead to:
 - 2 bit Barrel L2 address (\rightarrow 1/4 of submatrix: 80x64 pxl)
 - 2 bit Barrel L1 address (1 submatrix: 80x256 pxl)
 - 7 bit X address (80 pixels)
 - 3 bit zone Y address (8 vertical zones for each L2 barrel)
 - 8 bit zone pattern
 - TOT 22 bit
 - → expected rate: 130 (+1 TS) * 22 = <u>2.8 Gbps</u>

BUT: assuming a x4 cluster factor of the form 2x2: in 87.5% of cases 2 hits only & in 12.5% are required 4 hits

- \rightarrow [(22*2)* 0.875 + (22*4)*0.125] *25 Mtrack s⁻¹ cm⁻² * 1.3 cm²
 - Weighted average ~ <u>1.6 Gbps</u>

VHDL model simulations

- Models verification
- Estimation of the optimal parameters for the expected working conditions (hit rate, clock frequency ...)
 - Barrels depth
 - Zone width
- Efficiencies estimation

SIMULATIONS: the infrastructure

- Realistic VHDL model of a Sub-matrix for behavioral simulation.
 - 2D array of MP entities, each one with uniform random hit generation. User-defined hit rate.
 - NO pixel dead time taken into account. (pixel immediately reset after read)
- VHDL test bench
 - Integrated data integrity check.
 - Efficiencies evaluation.
 - File logs
 - Simulation runs e-log (storing the whole parameter set for each simulation)
 - Frozen hit log (once a MP gets frozen, the fired pixels within are stored in absolute x-y format)
 - B2 Readout log (stores the hits read out from any of the B2 decoded in absolute x-y format)
 - B1 Readout log (stores the hits read out from B1 decoded in absolute x-y format)
 - Output log (stores the hit read out from the final output stage decoded in absolute x-y format)
- Hit controller program: a C++ tool that checks the correspondence between the frozen hit log and output log.

Study on Barrel optimal Depth:

Study on Barrel optimal Depth:

Efficiencies

- Two sources of inefficiency due to digital readout:
 - Frozen MP inefficiency: hits generated on a frozen MP are lost.
 - **Overflow inefficiencies**: when a buffer goes full it looses all the incoming hits.

NB: for 200 MHz/cm² with Rdclk 80MHz and BC=1 us \rightarrow efficiency 97.6%

Sub-matrix readout Efficiency table

Hit rate 100 MHz/cm²

	sim DURATION	RDclk	всо	Mean Sweeping	global hit	rate on area	B2	B1	Scan buffer	Already hit effi	Frozen MP	Overflow effi B2	Overflow effi B1
RN	(us)	(MHz)	(us)	time (us)	rate (MHz)	(MHz/mm2)	depth	depth	overflow	(%)	effi (%)	(%)	(%)
107	1	60	0,5	0,45	33,8	1.03	8	32	0	99,96	98,90	100	100
108	1	80	0,5	0,34	33,8	1.03	8	32	0	99,95	99,39	100	100
109	1	100	0,5	0,27	33,8	1.03	8	32	0	99,96	99,53	100	100
110	1	60	1	0,75	33,8	1.03	8	32	0	99,91	98,83	100	100
111	1	80	1	0,56	33,8	1.03	8	32	0	99,91	99,10	100	100
112	1	100	1	0,45	33,8	1.03	8	32	0	99,91	99,25	100	100
113	1	60	1,5	0,95	33,8	1.03	8	32	0	99,86	98,78	100	100
114	1	80	1,5	0,71	33,8	1.03	8	32	0	99,86	99,05	100	100
115	1	100	1,5	0,57	33,8	1.03	8	32	0	99,86	99,23	100	100
116	1	60	2	1,08	33,8	1.03	8	32	0	99,84	98,42	100	100
117	1	80	2	0,81	33,8	1.03	8	32	0	99,83	98,81	100	100
118	1	100	2	0,65	33,8	1.03	8	32	0	99,83	99,04	100	100

Slow Control

- 1 Set of Read/Write registers
 - Chip settings
 - MP masks
- 1 set of Read Only registers
 - Acquisition flags
 - Rate counters
 - Error flags

The Test Chip

- Submitted Sept. 2009
- Technology STM 130 nm
- Hybrid Pixels Matrix 128x32 pixels, 50 μm pitch (1/20 of the target matrix area)
- Only 2 readout instances implemented
 - The readout instances are oversized respect to the matrix height (32 vs 256 pixels), but the connections implemented allows to stimulate all the components.

The Test Chip layout – ST130nm

Backups

- Pixels grouped into Macro Pixels:
 - Minimum entities addressable by readout logic
 - Minimum entities for time tagging

Shared data bus

- Pixels grouped into Macro Pixels:
 - Minimum entities addressable by readout logic
 - Minimum entities for time tagging

- Pixels grouped into Macro Pixels:
 - Minimum entities addressable by readout logic
 - Minimum entities for time tagging

- Pixels grouped into Macro Pixels:
 - Minimum entities addressable by readout logic
 - Minimum entities for time tagging

- Pixels grouped into Macro Pixels:
 - Minimum entities addressable by readout logic
 - Minimum entities for time tagging

- Pixels grouped into Macro Pixels:
 - Minimum entities addressable by readout logic
 - Minimum entities for time tagging

Col enable

Shared data bus

Ζ Ζ Ζ Ζ

0 1 Ζ Ζ Ζ Ζ Ζ Ζ Ζ Ζ Ζ Ζ Ζ Ζ Ζ Ζ

- Pixels grouped into Macro Pixels:
 - Minimum entities addressable by readout logic
 - Minimum entities for time tagging

Shared data bus

Components synthesis

Components	Flip Flop registers	Logic gates
B2	~140	~1400
B1	~1000	~6700
Concentrator	~230	~1000
Concentrator out	~120	~370
I2C interface	~130	~600
Mask register	~520	~2300
Scan buffer	~4700	~9600
Register file	~1000	~2700
Sparsifier	~160	~1000
Sweeper	~7200	~16200