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Overview 

  The ALICE ITS and SPD 

  SPD Installation and Commissioning 
  Standalone tests 
  Cosmic runs 

  First Experience with LHC 
  Injection tests 2008 
  Circulating beam 2008 
  Activities in 2009 

  Lessons learnt and possible applications for the future: NA62 
  Challenges for NA62 
  Material budget 

  Conclusion 
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The ALICE Experiment 
 Designed for ultra-relativistic HI 

collisions 

  Extreme track densities 

  dN/dη ~ 2000 – 8000 

  High granularity detectors with 
many space points 

  Very low material budget 

  Moderate magnetic field (0.5T) 

  Hadron, lepton and photon PID 
over large momentum range 
(0.1 GeV/c – 100 GeV/c) 
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  Lower luminosity and 
interaction rate wrt ATLAS, CMS  

  10 kHz (Pb-Pb) – 300kHz (pp) 

  Irraditiation levels after 10 
years: 2.5 kGy/3 1012 neq cm-2 
at innermost layers 
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The ALICE Inner Tracking System 

  6 layers of silicon 
detectors: 
  2 layers of pixels (SPD) 

  2 layers of drift (SDD) 

  2 layers of ds strips (SSD) 

  Radial coverage: 
  Min.: 3.9 cm (SPD 1) 

  Max.: 43 cm (SSD 2) 

  dE/dx information in 4 
outer layers (SDD, SSD) 

  L0 trigger (SPD) 
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SPD SDD SSD 

TPC 
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The ALICE Inner Tracking System 
  Improve primary vertex 

reconstruction and 
momentum resolution 

  Secondary vertexing 
capability (c, b and hyperon 
decays) 

  Track impact parameter 
resolution 

  Tracking and PID of low pT 
particles 

  Prompt L0 trigger capability 
(<800 ns) 

  Charged particle 
pseudorapidity distribution 
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The ALICE Inner Tracking System 

RD09 Conference – P. Riedler/CERN 6 

low mass: 8 % X0 
SPD        2.3 % 
SDD        2.4 % 
SSD        1.7 % 
structure 1.3 % 

layer 
type R 

[cm] 
area 
[m2] 

chan-
nels 

occu-
pancy 

σ_Rφ
 σ_Z 

1 pixels 
SPD 

3.9  0.07 3.2 M 2.1 
12 µm 100 µm 

2 7.6  0.14 6.6 M 0.6 

3 drift 
SDD 

15.0  0.42 43 k 2.5 
35 µm 25 µm 

4 23.9  0.89 90 k 1 

5 double 
sided 
strip 
SSD 

38.0  2.2 1.1 M 4 
20 µm 830 µm 

6 43.0  2.8 1.5 M 3.3 
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The ALICE Inner Tracking System 

ITS presentations in this conference: 

 G. Aglieri Rinella - The ALICE Pixel Trigger system, commissioning 
and operation (Wed. 11:15) 

  Francesco Prino - Operation the Silicon Drift Detectors of the 
ALICE Inner Tracking System during cosmic runs (Wed. 12:05) 

 G.J.L. Nooren - Experience with the Silicon Strip Detector of 
ALICE (Wed. 12:55) 
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The ALICE SPD 

  2 barrel layers at r=3.9 cm 
and 7.6 cm built as two half 
barrels around the beam-
pipe (r = 29 mm) 

  Light weight support structure 
(200 µm thick carbon fiber) 

 C4F10 evaporative cooling 
system (1.35 kW power 
dissipation) 

  120 half-staves, 1200 pixel 
chips, 9.8 106 channels 
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The ALICE SPD 
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Be-beampipe 

Minimum distance ‘beampipe - inner layer’: 5 mm 
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The ALICE SPD 
  ALICE1LHCb readout chip 

  Mixed signals, 0.25 µm CMOS, 8192 cells 
  Unique L0 trigger capability (see talk by 

Gianluca Aglieri) 
  Thinned to 150 µm 

  Sensor: 
  P-in-n,  70.7 mm x 16.8 mm 
  200 µm thick 

  Flip chip bonding 
  Pb-Sn solder bump bonding 
  5 readout chips connected to one 

sensor 
  Reworking process developed: yield 84% 
  Bump yield requirement: >99% (77% 

ladder yield) 

  Material budget 1.14 % X0 per layer 
including service connections (multi-
layer bus) 
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13.5 mm 

15.8 m
m

 

Pb-Sn Bump Bond  

25 µm 
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SPD Installation and Commissioning 

  The ALICE SPD was pre-commissioned in a clean-room at CERN using 
the final components for: 
  Readout, DAQ, cooling plant, DCS system, cables, … 

  The SPD was installed in the ALICE experiment in June 2007 

  Standalone calibration (started on fraction of half-staves in 12/2007) 
RD09 Conference – P. Riedler/CERN 11 11 



SPD Standalone Tests 
 Carried out outside experimental data taking periods 

  Examples: Threshold scans, matrix uniformity response, check of 
noisy and dead pixels, leakage current measurements, 
temperature checks, … 
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~2500 e- ~3700 e- 

noise 

HS min. threshold ~ 2000 e- 

Average leakage current (50V): 
5.8 µA (23.8 cm2 sensor) 
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SPD Standalone Tests 
  Each chip contains 42 8-bit DACs (1200 chips in total) 

 Correct setting of all DACs verified, e.g. matrix uniformity using 
internal test pulse 

RD09 Conference – P. Riedler/CERN 13 13 



Cosmic Runs 

 1st Cosmic Run – Dec. 2007 
  First acquisition tests on a fraction of modules (ongoing installation 

work on all sub-detectors) 

 2nd Cosmic Run – Feb./Mar. 2008 
  Both sides of the SPD connected, connection commissioning 

ongoing 

  Calibration tests + first cosmic muons seen in ITS 

 3rd Cosmic Run – Jun./Oct. ’08 
  Cosmic runs with Pixel trigger 

  First alignment of the ITS modules + test TPC/ITS track matching 

  4th Cosmic Run (started mid August 2009) 
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SPD in Cosmic Runs 

  106/120 half-staves - 8.6 M pixels 

  Threshold setting: 200 DAC (~2800 e-) 

 Missing pixels/half-stave: <0.15% 
  6488 dead pixels 

  4096 missing pixels due to wire bonding damage 

  806 masked noisy pixel 

 Detector readout time: ≈ 320 µs 

 Detector dead time: 
  0% up to ≈ 3kHz (multi-event buffering) 
  ≈ 320 µs at 40 MHz trigger rate 
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SPD in Cosmic Runs 

  In 2008  ~105 good events collected 
for alignment using the L0 pixel 
trigger 

  Event selection: one hit in the 
outer layer of the top half-barrel 
in coincidence with one hit in the 
outer layer of the bottom half-
barrel 

  Trigger rate (~0.18 Hz) compatible 
with simulation and previous 
measurements taken in L3 

  65000 events ≥ 3 clusters in SPD 

  35000 events ≥ 4 clusters in SPD 
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Online Display 
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SPD in Cosmic Run 

Alignment: 

  Two track-based methods to extract the alignment parameters 
(translations and rotations) of the SPD modules: 
 Global minimization with Millepede (default method) 
  Full ITS alignment SPD+SDD+SSD 

  Iterative approach  

  SPD barrels – 10 sectors – 120 half-staves – 240 sensors 

  ITS Standalone tracker adapted for cosmics 

   Pseudo-vertex = point of closest approach between two 
“tracklets” in top and bottom SPD half-barrels 

   Search for two back-to-back tracks starting from this vertex 
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SPD in Cosmic Runs 
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After realignment with cosmics using SPD triggered data and Millepede: 

  Effective rϕ resolution ~14 µm (nominal detector position resolution rϕ 12 µm) 

Track-to-track (top vs bottom) distance in 
transversal plane 

σ = 48 μm (vs. 40 μm in simulation with ideal alignment)‏ 

SPD only, 2008 B=0 data 
A.Dainese 
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First Experience with LHC 

  June 15, 2008: during the 
beam injection test in Tl2, the 
SPD layers in self-triggering 
mode detected the first “sign 
of life” of LHC 

  Two further injection tests: 
  August 2008 

  July 2009 

  SPD participated in all tests 
(and provided trigger signal) 
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Longitudinal tracks along  
one pixel module (∼14 cm) 
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First Experience with LHC 

 Accumulated injection tests and cosmic data used to cross-
check uniformity response of pixel matrix 
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Matrix response from 6 half-staves 
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First Experience with LHC 

  In Sept. 2008 the ITS was ready to record the first collisions in LHC 

  First LHC beam-induced interaction was recorded by the ALICE 
ITS on 11 Sep ’08 using the SPD trigger 
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 Collision of beam-halo particle with the first pixel layer: 7 reconstructed tracks 
from common vertex. 
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Status 2009 
  Oct 2008: ALICE has opted for a long shutdown to complete the 

installation of outer detectors and re-arrange all services (power, optical 
and cooling) on Side A of the central detectors, including the SPD, to 
improve access to the TPC electronics. 

  Detector operations were resumed after the reconnection of all services in 
July. Re-commissioning and optimization in progress. 
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Lessons Learnt 

 We have learnt to build a robust low mass detector which 
performs within expectations and mastered many technical 
challenges on the way  

 Certain aspects have proven to be more challenging than 
expected, e.g. services in general (optical connections, power 
supplies, cooling, …) 

  Future and upcoming projects which face similar challenges 
can profit from the experience 

  Example presented in the next slides: the NA62 Gigatracker 
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NA62 Experiment 

  The NA62 Collaboration aims to measure O(100) K+→π+νν events 
with ~10% background at the CERN SPS in two years of data taking  

  The K+→π+νν decays represent a theoretically  clean environment 
sensitive to new physics 

 π/K/p (~6% K+) 

  Precise momentum and direction measurement of kaon and pion 
is of key importance 

  Precise timing measurement to associate the outgoing pion to the 
correct incoming parent kaon 
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NA62 Detector Layout 
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Gigatracker 

SPS primary p: K+→π+ ν ν 
400 GeV/c 
Non-separated beam: 
• 75 GeV/c 
• 800 MHz 
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Gigatracker 

  Beam spectrometer made of 3 stations of hybrid silicon pixel 
detectors 

RD09 Conference – P. Riedler/CERN 26 

13.2 m 9.6 m 

Schematic view – not to scale 
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Gigatracker Requirements 
  Precise momentum and angular track resolution: σ(p)/p~0.2%, σθ 

~14 µrad: pixel size: 300 µm x 300 µm   

  Precise timing information: σ(t)~ 150 ps rms on single track 

  Material budget per station: 0.5% X0 to preserve beam divergence 
for precise downstream measurement and to limit beam hadronic 
interactions 

  Sustain high and non-uniform rate (~1.5 MHz/mm2 in hot center, 
~0.8-1.0 GHz total) 

  High fluence levels: ~2 1014 neq cm-2 in 100 days (~1 year) 

  Operation in beam vacuum to reduce multiple scattering 

  Estimated power dissipation per readout chip ~ 2W/cm2 
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Gigatracker Layout 
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  Fixed target configuration: access to 
each station along the beamline 

  One large sensor connected to 2 
rows of 5 readout chips via flip chip 
bonding 

  Low mass support structure (carbon 
fibre) 

  Various low mass cooling options 
under study: 
  Cooling via nitrogen flow to collect 

power dissipated on the surface 
  Cooling integrated in support, heatsink 

made of high thermal conducting 
carbon fiber 

  Micro-channel cooling system 
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Material Budget 
  Material budget is one of the key elements for the success of the 

Gigatracker 

  The SPD is the lowest mass pixel detector of all LHC experiments 

  Target material budget for the Gigatracker is ~ half of what is used in the 
SPD 

  Layout differences: SPD – collider layout, GTK – fixed target layout 
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1.14 % X0 per layer 0.5 % X0 per station 
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Material Budget 

 Which components will contribute to the material budget: 
  Sensor 

  Readout chip 

  Support 

  Cooling 

  Connections (cables, wires, etc.) 

  Glue, grease, … 

  Each component needs to be optimized to reach the target 
material budget without compromising the performance 
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Material Budget 

  Sensor  
  thickness: 200 µm 
  Surface: 11.9 cm2 

  Bow has to be controlled to 
ensure high bump bonding 
yield  

  Readout chip 
  Thickness: 150 µm 
  Large chip: 13.5 mm x 15.8 mm 
  Thinning process optimized to 

reduce damage induced 
stress, losses in processing and 
to optimize chip flatness 
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  Sensor  
  Target thickness: 200 µm (signal 

for timing information!) 

  Surface: 16.2 cm2 

  One large sensor to use simpler 
support, avoid dead regions 
and overlap 

  Readout chip 
  Target thickness: <100 µm 

  Large chip: ~19 mm x 12 mm 

  Thinning process needs to be 
developed and optimized 

0.21% X0 

0.16% X0 0.11% X0 
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Material Budget 

  Examples from ALICE 
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Measurement of the sensor flatness 
along the long side, measured 
across the center 

Measurement of the readout chip 
flatness measured across the center 

6.99 µm  

9.9 µm  
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Material Budget 
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 Connections (cables, etc.) 
  One high density flat cable to 

connect each pixel chip with 
the on detector electronics 

  Total thickness: 280 µm 

  Special development using Al 
and Kapton (several years) 

 Connections (cables, etc.) 
  Fixed target arrangement 

allows to place connections 
outside beam area 

  Caution not to add too much 
material that can interfere with 
the beam halo 

0.48% X0 
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Conclusion 
  The ALICE SPD was successfully commissioned and ready for first 

beam in 2008 

  The SPD participated in several experimental cosmic runs and 
provided a trigger signal for he L0 trigger decision. Alignment 
studies using these data have shown to be in good agreement 
with the simulation 

  A long shutdown for re-arrangement of all services allowed to start 
re-commissioning of the detector in July 2009 

  A good experience of building a low mass pixel detector has been 
gained and new projects, such as the Gigatracker for NA62 can 
profit from this experience 

  The Gigatracker represents a novel pixel detector with very 
challenging requirements. The R&D activities have already started 
and first prototypes of readout chips are currently under test 
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