Operation Experience with the ALICE Silicon Pixel Detector – and Implications for NA62



P. Riedler/CERN on behalf of the ALICE SPD Project in the ALICE Collaboration

And



On behalf of the Gigatracker Working Group in the NA62 Collaboration

### Overview

- The ALICE ITS and SPD
- SPD Installation and Commissioning
  - Standalone tests
  - Cosmic runs
- First Experience with LHC
  - Injection tests 2008
  - Circulating beam 2008
  - Activities in 2009
- Lessons learnt and possible applications for the future: NA62
  - Challenges for NA62
  - Material budget
- Conclusion



# The ALICE Experiment

- Designed for ultra-relativistic HI collisions
- Extreme track densities
  - dN/dη ~ 2000 8000
  - High granularity detectors with many space points
  - Very low material budget
  - Moderate magnetic field (0.5T)
- Hadron, lepton and photon PID over large momentum range (0.1 GeV/c – 100 GeV/c)



- Lower luminosity and interaction rate wrt ATLAS, CMS
  - 10 kHz (Pb-Pb) 300kHz (pp)
  - Irraditiation levels after 10 years: 2.5 kGy/3 10<sup>12</sup> n<sub>eq</sub> cm<sup>-2</sup> at innermost layers

- 6 layers of silicon detectors:
  - 2 layers of pixels (SPD)
  - 2 layers of drift (SDD)
  - 2 layers of ds strips (SSD)
- Radial coverage:
  - Min.: 3.9 cm (SPD 1)
  - Max.: 43 cm (SSD 2)
- dE/dx information in 4 outer layers (SDD, SSD)
- L0 trigger (SPD)



- Improve primary vertex reconstruction and momentum resolution
- Secondary vertexing capability (c, b and hyperon decays)
- Track impact parameter resolution
- Tracking and PID of low p<sub>T</sub> particles
- Prompt L0 trigger capability (<800 ns)</li>
- Charged particle pseudorapidity distribution



S.Alekhin et al. HERA and the LHC - A workshop on the implications of HERA for LHC physics:Proceedings Part B, arXiv:hep-ph/0601013.

| layer | type            | <i>R</i><br>[cm] | area<br>[m²] | chan-<br>nels | occu-<br>pancy | σ_ <b>R</b> φ | σ_Ζ    |  |
|-------|-----------------|------------------|--------------|---------------|----------------|---------------|--------|--|
| 1     | pixels          | 3.9              | 0.07         | 3.2 M         | 2.1            | 12 um         | 100    |  |
| 2     | SPD             | 7.6              | 0.14         | 6.6 M         | 0.6            | τΖ μπ         | τοο μπ |  |
| 3     | drift           | 15.0             | 0.42         | 43 k          | 2.5            | 25            | 25     |  |
| 4     | SDD             | 23.9             | 0.89         | 90 k          | 1              | <b>35</b> μm  | 25 µm  |  |
| 5     | double<br>sided | 38.0             | 2.2          | 1.1 M         | 4              |               |        |  |
| 6     | strip<br>SSD    | 43.0             | 2.8          | 1.5 M         | 3.3            | 20 μm         | 830 µm |  |



| low ma  | ass: 8 % X <sub>0</sub> |
|---------|-------------------------|
| SPD     | 2.3 %                   |
| SDD     | 2.4 %                   |
| SSD     | 1.7 %                   |
| structu | re 1.3 %                |

ITS presentations in this conference:

- G. Aglieri Rinella The ALICE Pixel Trigger system, commissioning and operation (Wed. 11:15)
- Francesco Prino Operation the Silicon Drift Detectors of the ALICE Inner Tracking System during cosmic runs (Wed. 12:05)
- G.J.L. Nooren Experience with the Silicon Strip Detector of ALICE (Wed. 12:55)



# The ALICE SPD

- 2 barrel layers at r=3.9 cm and 7.6 cm built as two half barrels around the beampipe (r = 29 mm)
- Light weight support structure (200 µm thick carbon fiber)
- C<sub>4</sub>F<sub>10</sub> evaporative cooling system (1.35 kW power dissipation)
- 120 half-staves, 1200 pixel chips, 9.8 10<sup>6</sup> channels



Half-stave

## The ALICE SPD



# The ALICE SPD

- ALICE1LHCb readout chip
  - Mixed signals, 0.25 µm CMOS, 8192 cells
  - Unique L0 trigger capability (see talk by Gianluca Aglieri)
  - Thinned to 150 µm
- Sensor:
  - P-in-n, 70.7 mm x 16.8 mm
  - 200 µm thick
- Flip chip bonding
  - Pb-Sn solder bump bonding
  - 5 readout chips connected to one sensor
  - Reworking process developed: yield 84%
  - Bump yield requirement: >99% (77% ladder yield)
- Material budget 1.14 % X<sub>0</sub> per layer including service connections (multilayer bus)





# SPD Installation and Commissioning

- The ALICE SPD was pre-commissioned in a clean-room at CERN using the final components for:
  - Readout, DAQ, cooling plant, DCS system, cables, ...
- The SPD was installed in the ALICE experiment in June 2007



Standalone calibration (started on fraction of half-staves in 12/2007)

Exit

# SPD Standalone Tests

- Carried out outside experimental data taking periods
- Examples: Threshold scans, matrix uniformity response, check of noisy and dead pixels, leakage current measurements, temperature checks, ... Analyze/Display Produce Containers



RD09 Conference – P. Riedler/CERN

# SPD Standalone Tests

- Each chip contains 42 8-bit DACs (1200 chips in total)
- Correct setting of all DACs verified, e.g. matrix uniformity using internal test pulse



## Cosmic Runs

- Ist Cosmic Run Dec. 2007
  - First acquisition tests on a fraction of modules (ongoing installation work on all sub-detectors)
- 2nd Cosmic Run Feb./Mar. 2008
  - Both sides of the SPD connected, connection commissioning ongoing
  - Calibration tests + first cosmic muons seen in ITS
- 3rd Cosmic Run Jun./Oct. '08
  - Cosmic runs with Pixel trigger
  - First alignment of the ITS modules + test TPC/ITS track matching
- 4th Cosmic Run (started mid August 2009)

# SPD in Cosmic Runs

- 106/120 half-staves 8.6 M pixels
- Threshold setting: 200 DAC (~2800 e-)
- Missing pixels/half-stave: <0.15%</p>
  - 6488 dead pixels
  - 4096 missing pixels due to wire bonding damage
  - 806 masked noisy pixel
- Detector readout time: ≈ 320 µs
- Detector dead time:
  - 0% up to ≈ 3kHz (multi-event buffering)
  - $\approx$  320 µs at 40 MHz trigger rate

# SPD in Cosmic Runs

- In 2008 ~10<sup>5</sup> good events collected for alignment using the L0 pixel trigger
  - Event selection: one hit in the outer layer of the top half-barrel in coincidence with one hit in the outer layer of the bottom halfbarrel
  - Trigger rate (~0.18 Hz) compatible with simulation and previous measurements taken in L3
  - 65000 events  $\geq$  3 clusters in SPD
  - 35000 events  $\geq$  4 clusters in SPD



# SPD in Cosmic Run

### Alignment:

- Two track-based methods to extract the alignment parameters (translations and rotations) of the SPD modules:
  - Global minimization with Millepede (default method)
    - Full ITS alignment SPD+SDD+SSD
  - Iterative approach
- SPD barrels 10 sectors 120 half-staves 240 sensors
- ITS Standalone tracker adapted for cosmics
  - Pseudo-vertex = point of closest approach between two "tracklets" in top and bottom SPD half-barrels
  - Search for two back-to-back tracks starting from this vertex

# SPD in Cosmic Runs



 $\sigma$  = 48  $\mu$  m (vs. 40  $\mu$  m in simulation with ideal alignment)

After realignment with cosmics using SPD triggered data and Millepede:

• Effective r $\phi$  resolution ~14  $\mu$ m (nominal detector position resolution r $\phi$  12  $\mu$ m)



# First Experience with LHC

- June 15, 2008: during the beam injection test in TI2, the SPD layers in self-triggering mode detected the first "sign of life" of LHC
- Two further injection tests:
  - August 2008
  - July 2009
- SPD participated in all tests (and provided trigger signal)



Longitudinal tracks along one pixel module (~14 cm)



## First Experience with LHC

 Accumulated injection tests and cosmic data used to crosscheck uniformity response of pixel matrix





# First Experience with LHC

- In Sept. 2008 the ITS was ready to record the first collisions in LHC
- First LHC beam-induced interaction was recorded by the ALICE ITS on 11 Sep '08 using the SPD trigger





Collision of beam-halo particle with the first pixel layer: 7 reconstructed tracks from common vertex.

# Status 2009

- Oct 2008: ALICE has opted for a long shutdown to complete the installation of outer detectors and re-arrange all services (power, optical and cooling) on Side A of the central detectors, including the SPD, to improve access to the TPC electronics.
- Detector operations were resumed after the reconnection of all services in July. Re-commissioning and optimization in progress.





RD09 Conference – P. Riedler/CERN

### Lessons Learnt



- We have learnt to build a robust low mass detector which performs within expectations and mastered many technical challenges on the way
- Certain aspects have proven to be more challenging than expected, e.g. services in general (optical connections, power supplies, cooling, ...)
- Future and upcoming projects which face similar challenges can profit from the experience
- Example presented in the next slides: the NA62 Gigatracker



## NA62 Experiment

- The NA62 Collaboration aims to measure O(100)  $K^+ \rightarrow \pi^+ vv$  events with ~10% background at the CERN SPS in two years of data taking
- The  $K^+ \rightarrow \pi^+ v v$  decays represent a theoretically clean environment sensitive to new physics
- π/K/p (~6% K+)
- Precise momentum and direction measurement of kaon and pion is of key importance
- Precise timing measurement to associate the outgoing pion to the correct incoming parent kaon  $P_{\pi}$

P<sub>K</sub>

 $\theta_{\pi \mathbf{K}}$ 



## NA62 Detector Layout



# Gigatracker

 Beam spectrometer made of 3 stations of hybrid silicon pixel detectors



Schematic view – not to scale

# Gigatracker Requirements

- Precise momentum and angular track resolution:  $\sigma(p)/p\sim0.2\%$ ,  $\sigma_{\theta} \sim 14 \mu rad$ : pixel size: 300  $\mu m \times 300 \mu m$
- Precise timing information:  $\sigma(t) \sim 150$  ps rms on single track
- Material budget per station: 0.5% X<sub>0</sub> to preserve beam divergence for precise downstream measurement and to limit beam hadronic interactions
- Sustain high and non-uniform rate (~1.5 MHz/mm<sup>2</sup> in hot center, ~0.8-1.0 GHz total)
- High fluence levels: ~2 10<sup>14</sup> n<sub>eq</sub> cm<sup>-2</sup> in 100 days (~1 year)
- Operation in beam vacuum to reduce multiple scattering
- Estimated power dissipation per readout chip ~ 2W/cm<sup>2</sup>

# Gigatracker Layout

- Fixed target configuration: access to each station along the beamline
- One large sensor connected to 2 rows of 5 readout chips via flip chip bonding
- Low mass support structure (carbon fibre)
- Various low mass cooling options under study:
  - Cooling via nitrogen flow to collect power dissipated on the surface
  - Cooling integrated in support, heatsink made of high thermal conducting carbon fiber
  - Micro-channel cooling system



 Material budget is one of the key elements for the success of the Gigatracker



- The SPD is the lowest mass pixel detector of all LHC experiments
- Target material budget for the Gigatracker is ~ half of what is used in the SPD
- Layout differences: SPD collider layout, GTK fixed target layout

- Which components will contribute to the material budget:
  - Sensor
  - Readout chip
  - Support
  - Cooling
  - Connections (cables, wires, etc.)
  - Glue, grease, ...



 Each component needs to be optimized to reach the target material budget without compromising the performance



### Sensor



- thickness: 200 µm
- Surface: 11.9 cm<sup>2</sup>
- Bow has to be controlled to ensure high bump bonding yield
- Readout chip 0.16% X<sub>0</sub>
  - Thickness: 150 µm
  - Large chip: 13.5 mm x 15.8 mm
  - Thinning process optimized to reduce damage induced stress, losses in processing and to optimize chip flatness



### Sensor

- Target thickness: 200 µm (signal for timing information!)
- Surface: 16.2 cm<sup>2</sup>
- One large sensor to use simpler support, avoid dead regions and overlap
- Readout chip  $0.11\% X_0$ 
  - Target thickness: <100 µm</p>
  - Large chip: ~19 mm x 12 mm
  - Thinning process needs to be developed and optimized

### Examples from ALICE



|                                       | H-Diff: 0.93 nn, <u>U-Diff: 6.99 Fn</u><br>Length: 0.936 nn RODENSTOC |   |     |   |     |       |    |     | ock |      |
|---------------------------------------|-----------------------------------------------------------------------|---|-----|---|-----|-------|----|-----|-----|------|
|                                       | -25.0                                                                 |   | 2.8 |   | 5.6 | 8.4   | 1  | 1.2 | cun | 14.8 |
|                                       | -29.8                                                                 |   |     |   |     |       |    |     |     |      |
|                                       | -15.8-                                                                |   | 1   |   |     |       | 9  | £   | 54  |      |
|                                       | -18.0                                                                 |   |     |   |     | × .   |    |     |     | 1    |
|                                       | -5.8                                                                  | - |     | - |     | V     |    | -   | -   |      |
| CLAUDE D                              | 9.9                                                                   | - |     |   |     | ▲ 6.9 | 91 | Im  |     | /    |
| Sf not active<br>Level active         | 5.8                                                                   |   |     |   |     | 1.00  |    | -   |     |      |
| Profile<br>Le not activ               | 18.8-                                                                 |   |     |   |     | 1.1   |    |     |     |      |
| Spe: 20.0<br>Res: 8093<br>Y-Direction | 15.0                                                                  |   |     |   | 72  |       |    | 5   | 9   |      |
| feasure : 2-D<br>Ran : 380            | рн<br>29.85                                                           |   |     |   |     |       |    |     |     |      |

Measurement of the sensor flatness along the long side, measured across the center Measurement of the readout chip flatness measured across the center



### Connections (cables, etc.)

- One high density flat cable to connect each pixel chip with the on detector electronics
- Total thickness: 280 µm
- Special development using Al and Kapton (several years)





### Connections (cables, etc.)

- Fixed target arrangement allows to place connections outside beam area
- Caution not to add too much material that can interfere with the beam halo



## Conclusion

- The ALICE SPD was successfully commissioned and ready for first beam in 2008
- The SPD participated in several experimental cosmic runs and provided a trigger signal for he L0 trigger decision. Alignment studies using these data have shown to be in good agreement with the simulation
- A long shutdown for re-arrangement of all services allowed to start re-commissioning of the detector in July 2009
- A good experience of building a low mass pixel detector has been gained and new projects, such as the Gigatracker for NA62 can profit from this experience
- The Gigatracker represents a novel pixel detector with very challenging requirements. The R&D activities have already started and first prototypes of readout chips are currently under test