RD09 – 9th International Conference on Large Scale Applications and Radiation Hardness of Semiconductor Detectors

The ATLAS Beam Conditions and Beam Loss Monitors

Boštjan Maček J. Stefan Institute, Ljubljana

30 September - 2 October 2009, Florence, Italy

The ATLAS BCM collaboration members

– D. Dobos, J. Hartert, H. Pernegger, E. Stanecka, P. Weilhammer

JSI, Ljubljana

- V. Cindro, I. Dolenc, A. Gorišek, G.Kramberger, B. Maček,I. Mandić, E. Margan, M. Zavrtanik, M. Mikuž
- OSU, Columbus
 - H. Kagan, J. Moss, S. Smith

- Univ. of Applied Science, Wiener Neustadt
 - E. Griesmayer, H. Frais-Kölbl, M. Niegl[†]
- Univ. Toronto
 - M. Cadabeschi, E. Jankowski, D. Tardif, W. Trischuk

BCM web page: <u>https://twiki.cern.ch/twiki/bin/view/Atlas/BcmWiki</u>

Florence, Italy, 1/10/2009 B. Mače

- ✤ why Beam Conditions Monitor (BCM)
- ✤ basic operating principle
- ✤ design of the BCM
- commissioning with cosmics
- Beam Loss Monitor (BLM)

✤ LHC will store more than two orders of magnitude more energy than any previous accelerator (~2800 bunches with 10¹¹ protons @ 7 TeV => 360 MJ per beam)

Motivation

- beam losses could be dangerous to ATLAS Inner Detector
- ✤ experience shows that beam accidents can happen
 - Tevatron device misinterprets a command to retract and instead moves into the beam
 - 10 ms were needed until beam was dumped

★ time constants of magnets are in the order of few LHC turns (~ms) → fast action can dump the beam in time & prevent beam accidents

Protection from beam accidents

- ✤ ATLAS and CMS have Target Absorber Secondaries collimator (TAS) @ Z=±18 m for passive protection:
 - protects inner triplet magnets from secondaries produced in *pp* collisions
 - protect Inner Detector from beam failures
- ✤ active protection Beam Interlock System (BIS):
 - two redundant optical loops for *BeamPermit* signals
 - user systems provide *UserPermit* signals
 - machine beam loss monitors
 - machine beam position monitors
 - experiment Beam Conditions Monitor
 - ...
 - if any of *UserPermit* signals drops \rightarrow optical loop interrupted \rightarrow *BeamPermit* drops
 - beam dumped within 3 turns $\sim 270 \,\mu s$
 - additional *InjectionPermit* signal for preventing injection until experiments ready
 - prevents injection, but does not effect circulating beams

BCM protection

12.5ns

-12.5 ns

- time of flight measurement to distinguish between interactions and downstream background (beam gas, halo, TAS scrapping)
 - measurement each proton bunch crossing every 25 ns

TAS (collimator) event: $\Delta t=2z/c=\pm 12.5$ ns, ... – out-of-time coincidence

Realization

TRT

BCM modules

- 4 detector modules on each side of the detector (within PIXEL volume)
- mounted on PIXEL support structure
 - modules at $z=\pm 183.8$ cm
 - *r*=5.5 cm (*η*≈4.2)
 - 45° angle with respect to the beam pipe

Florence, Italy, 1/10/2009 B. Maček - The ATLAS Beam Conditions and Beam Loss Monitors

VP1 image, courtesy T.Kittelmann

Installation

Florence, Italy, 1/10/2009 B. Maček - The ATLAS Beam Conditions and Beam Loss Monitors

BCM diamond sensor

- ✤ requirements
 - bunch-by-bunch measurement
 - fast signal (1ns)
 - narrow width (2 ns)
 - fast baseline restoration (10 ns)
 - radiation hard
 - close to interaction point & beam pipe
 - estimated to 0.5 MGy & 10^{15} pions/cm² in 10 years
- Poly-crystalline CVD diamond chosen as sensor material
 - Developed by CERN RD42/Element Six Ltd., metallized with radiation hard process at Ohio State University
 - radiation hardness shown to withstand fluences up to $10^{15} \, p/cm^2$
 - Fast signal operate at high drift field 2 V/ μ m
 - Low leakage current no cooling required
 - high charge mobility and ccd of $>200\mu m$

Signal optimization

Florence, Italy, 1/10/2009

typical signal before band-width filter

**

bandwidth limit

BCM connectivity

Florence, Italy, 1/10/2009

for each trigger 32 consecutive BCs were read-out

- 18 BCs before trigger

- 13 BCs after trigger

٠

Timing histograms for cosmic data

- histogram the BC number of reconstructed BCM hits
- random uniform background as expected
- ✤ Gaussian peak
 - at BC=20
 - 6 out of 1 M IDCosmic triggers gives true BCM hits
- width of distribution is dominated by trigger timing

Luminosity monitoring

- BCM will contribute to luminosity monitoring with
 - Monitor instantaneous luminosity
 - vertex position monitoring
 - determine dead time

*

- beam separation scans
- first algorithms will be based on non-empty event counting
 - monitoring of luminosity per BCID
 - providing instantaneous luminosity at Hz rate
- Monte-Carlo simulations under-way to provide initial calibration used before first beam-separation scans, and understanding systematic

ATLAS BLM system

BLM – beam loss monitor

- implemented as a back-up system to BCM
- majority of the system copied from LHC beam loss monitors
- ✤ sensors
 - one 8×8mm diamond, 500 μ m thick
 - operated at 500 V
 - current @ 500 V is typically less than 1-2 pA

- ✤ 12 sensors installed on Inner Detector End Plate (6 on each side)
 - z~3450 mm, r~65 mm
 - coaxial cable to PP2
- BLM cards at PP2 digitize integrated current
 - over range of time periods 40 μ s 80s
 - converted to frequency (LHC CFC cards, radiation tolerant)
 - optical fiber to USA15 counting room
 - data recorded by FPGA
- information complementary to BCM, but can be used standalone in case of BCM problems
 - each time period can have independent threshold
 - upon exceeding the threshold a beam-dump signal is issued

Summary

- ✤ ATLAS BCM will monitor the beam conditions
 - using TOF measurements
 - diamond as sensitive material
 - "double decker" configuration at 45° towards the beam
 - additional goals to safety
 - triggering
 - beam-separation scans
 - luminosity
 -
- ✤ First experience with the system obtained in last eighteen months
- ✤ BLM implemented as a redundant system for safety purposes
- ✤ Looking forward to using it in the real LHC environment

Backup slides

Florence, Italy, 1/10/2009B. Maček - The ATLAS Beam Conditions and Beam Loss Monitors

More types of beam losses:

multi turn losses (intervention)

• beam degradation (equipment failure, wrong magnet settings, ...)

- single turn losses (diagnostics)
 - likely during injection due to wrong magnet settings
 - IR1 (ATLAS) furthest from injection
 - pilot bunch will be used to test the magnet settings $(5 \times 10^9 \text{ p} @ 450 \text{ GeV})$
 - simulation of beam orbits with wrong magnet setting (D. Bocian) exhibit scenarios with pilot beam scrapping TAS collimator

Signal processing - NINO

ATLAS

- ✤ developed for ALICE ToF (F. Anghinolfi et al.)
- ✤ radiation tolerant
- ✤ fabricated in 0.25 µm IBM process
- peaking time< 1 ns, jitter <25 ps</p>
- time-over-threshold amplifier discriminator chip
- ✤ width of LVDS output signal depends on input charge
- ✤ rad-tolerant laser diodes transmit fibers to USA15 counting room

Florence, Italy, 1/10/2009

B. Maček - The ATLAS Beam Conditions and Beam Loss Monitors

BCM detec

Signal processing - ROD

- optical signals received and transformed into PECL on two 8 channel optical receiver boards
- PECL signal from individual receiver board connected to Read Out Driver (ROD) based on Xilinx Virtex-4 based FPGA board
- ROD samples input signals with 2.56 GHz -> 64 samples of 390 ps for each BC (25 ns)
- raw data stored in DDR2 memory module for more than the last 1000 LHC turns
- real-time signal processing: rising edges and pulse widths are reconstructed in signals (at most the first 2 for each BC):
 - LHC post mortem analysis
 - on trigger (L1A) signal data is formatted and sent over optical link to Read Out Subsystem (ROS)
 - in-time and out-of-time coincidences: 9 trigger signals to CTP
 - high multiplicity \rightarrow LHC beam abort system and ATLAS DSS
- personality modules developed for interfacing input and output signals to RODs
- provides connections to:
 - ATLAS Central Trigger Processor (CTP)
 - Triggered data acquisition (TDAQ)
 - Detector Control System (DCS)
 - Detector Safety System (DSS)
 - Controls Interlocks Beam User (CIBU)

- lower noise lever due to different trigger & threshold settings
- timing remains the same
- ✤ TRT stream exhibits approx. same distribution width as IDCosmic stream of 2009
- ✤ RPC stream distribution broader because of RPC geometry

Channel occupancy November 2008

- channels 0-7 are low gain channels (expect to show signal for ~5 or more MIPs traversing the sensor simultaneously)
- NINO thresholds not calibrated different noise occupancies of readout channels
- ✤ no hits on C side with TRT Fast OR

Florence, Italy, 1/10/2009