ATLAS Diamond Pixel Modules

JOSHUA MOSS OHIO STATE UNIVERSITY OCTOBER 1, 2009

For the RD42 Collaboration

Outline:

•Diamonds in HEP •Trackers for IBL (ATLAS) and sLHC •scCVD and pCVD pixel modules Irradiation Studies •Summary

The RD42 Collaboration

D. Asner²², M. Barbero¹, V. Bellini², V. Belyaev¹⁵, E. Berdermann⁸, P. Bergonzo¹⁴, J-M. Brom¹⁰, M. Bruzzi⁵, D. Chren²³, V. Cindro¹², G. Claus¹⁰, M. Cristinziani¹, S. Costa², J. Cumalat²⁴, R. D'Alessandro⁶, W. de Boer¹³, D. Dobos³, I. Dolenc¹², W. Dulinski¹⁰, J. Duris²⁰, V. Eremin⁹, R. Eusebi⁷, H. Frais-Kölbl⁴, A. Furgeri¹³, K.K. Gan¹⁶, M. Goffe¹⁰, J. Goldstein²¹, A. Golubev¹¹, A. Gorišek¹², E. Griesmayer⁴, E. Grigoriev¹¹, D. Hits¹⁷, F. Hügging¹, H. Kagan^{16,}, R. Kass¹⁶, G. Kramberger¹², S. Kuleshov¹¹, S. Kwan⁷, S. Lagomarsino⁶, A. La Rosa³, A. Lo Giudice¹⁸, I. Mandic¹², C. Manfredotti¹⁸, C. Manfredotti¹⁸, A. Martemyanov¹¹, D. Menichelli⁵, M. Mikuž¹², M. Mishina⁷, J. Moss¹⁶, S. Mueller¹³, G. Oakham²², P. Olivero¹⁸, G. Parrini⁶, H. Pernegger³, M. Pomorski¹4, R. Potenza², K. Randrianarivony²², A. Robichaud²², S. Roe³, S. Schnetzer¹⁷, T. Schreiner⁴, S. Sciortino⁶, S. Smith¹⁶, B. Sopko²³, K. Stenson²⁴, R. Stone¹⁷, C. Sutera², M. Traeger⁸, D. Tromson¹⁴, W. Trischuk¹⁹, J-W. Tsung¹, C. Tuve², J. Velthuis²¹, E. Vittone¹⁸, S. Wagner²⁴, R. Wallny²⁰, P. Weilhammer^{3, \lapha}, N. Wermes¹

♦ Spokespersons

¹ Universität Bonn, Bonn, Germany ² INFN/University of Catania, Catania, Italy ³ CERN, Geneva, Switzerland ⁴ Fachhochschule für Wirtschaft und Technik, Wiener Neustadt, Austria ⁵ INFN/University of Florence, Florence, Italy ⁶ Department of Energetics/INFN, Florence, Italy ⁷ FNAL. Batavia, U.S.A. ⁸ GSI, Darmstadt, Germany ⁹ loffe Institute, St. Petersburg, Russia ¹⁰ IPHC, Strasbourg, France ¹¹ ITEP, Moscow, Russia ¹² Jožef Stefan Institute, Ljubljana, Slovenia ¹³ Universität Karlsruhe, Karlsruhe, Germany ¹⁴ CEA-LIST Technologies Avancees, Saclay, France ¹⁵ MEPHI Institute, Moscow, Russia ¹⁶ The Ohio State University, Columbus, OH, U.S.A. ¹⁷ Rutgers University, Piscataway, NJ, U.S.A. ¹⁸ University of Torino, Torino, Italy ¹⁹ University of Toronto, Toronto, ON, Canada ²⁰ UCLA, Los Angeles, CA, USA ²¹ University of Bristol, Bristol, UK ²² Carleton University, Ottawa, Canada ²³ Czech Technical University, Prague, Czech Republic ²⁴ University of Colorado, Boulder, CO, USA

24 institutes

78 participants

Diamond for Particle Tracking

Properties of diamond

- Radiation hard
- Low capacitance
- Small leakage current
- Room temperature operation
- Fast signal collection time
- High thermal conductivity

Disadvantage: Smaller signal than Si

Signal formation Charged Particle Diamond Particle Diamond Particle Liectrodes

Parameter of Interest: Charge Collection Distance

$$Q{=}\tfrac{\mathrm{d}}{\mathrm{t}}Q_0$$

Q: collected charge Q_o: ionized charge d: charge collection distance t: thickness of the diamond

 $\mathsf{d} = (\mu_e \tau_e + \mu_h \tau_h) \mathsf{E}$

E: average electric field μ_e,μ_h : mobility of electrons/holes τ_e, τ_h : lifetime of electrons/holes Experimentally:

$$\bar{d} = \frac{\langle Q \rangle \ [e]}{36 \ e/\mu \mathrm{m}}$$

Fabrication of Diamond Sensors

Chemical Vapor Deposition

- Microwave growth reactor
- Diamond growth copies substrate
 - × pCVD → several crystal seed centers
 - × scCVD → single crystal substrate (limited to ~1 cm²)
- Best pCVD material is grown thick ~2mm
- Polishing and thinning can improve charge collection distance

Metallization of Diamond

- No doping necessary
- Metal contacts applied by sputtering or evaporation
- Contacts can be applied as pads, strips or pixels

Diamond Pixel Modules

- > 16 FE chip and single FE chip devices produced
- > ATLAS pixel FE (FE-I3) and support electronics
- > Bump-bonded at IZM (Berlin), dressed and tested in Bonn
- Typical operating parameters for FE-I3: threshold ~1450e-1600e
 Peaking time ~22ns
 Noise ~
 - Noise ~ 140e Overdrive ~800e

scCVD Diamond Pixel Module

395µm thick scCVD diamond

•Sensor is ~10mm x ~10mm

•Constructed in Fall 2006

•2200/2880 bump-bonded pixels

• 50x400µm

•Data taken at CERN: 120GeV pions

Cluster Signal

Use tracking to predict hit position inside a pixel
Bias and Threshold dependant
Charge sharing and Cluster signal as expected

Measured resolution = $8.9 \mu m \pm 0.1 \mu m$

- •Normal incident tracks
- •Signal/Threshold ~8

•Typical ATLAS silicon module resolution $\sim 10 \ \mu m$

•Lower Threshold \rightarrow better resolution

Radiation Hardness Studies

- Lab Characterization: Source tests
- Test beams: pads, strips and pixels
- Irradiations:
 - 24GeV protons -> Cern SPS
 - o 70 MeV protons -> Sendai
 - 25 MeV protons -> Karlsruhe
 - Neutrons ->Ljubljana

12cm wafer Cr/Au dots 1cm apart

40

30 L

ε >99%

7-5 009-03-03 21:11:03 500

1000

Irradiated to

^ՄՄՈՆ<u>Ի ՆՈՆՈ ԴՆ Ե</u>Խ

2000

 $1.5 \times 10^{15} \,\mathrm{p/cm^2}$

2500

ADC Value of Cluster

3000

- Studies performed with many pCVD & scCVD samples
- \triangleright Diamonds irradiated up to ~18 x 10¹⁵ p/cm²

Irradiation Studies: scCVD Pixel Module

>scCVD diamond pixel module, 395 µm thick
>Both the sensor and electronics were irradiated

Time over Threshold • measured in 25ns clock cycles

A. La Rosa, 2008

Proton Irradiation Summary -- Preliminary Preliminary Summary of Proton Irradiations 500 collection distance (um) Radiation Damage 24GeV protons 450 400 Red Data: strip scCVD (x-shifted by -3.8) Open Red: pixel scCVD (x-shifted by -3.2) 350 Blue Data: strip pCVD 300 250 Blue curve: ccd=ccd0/[1+k*phi*ccd0] charge 200 150 100 50 0 10 15 20 25 0 5 Irradiation (x10^15 p/cm^2) pCVD and scCVD diamond follow the same damage curve:

 $1/ccd=1/ccd_0 + k \phi$.

Research Plans

Diamond R&D approved by ATLAS for LHC Upgrade R&D

Proposing Institutes:

- Carleton University (Canada)
- University of Toronto (Canada)
- University of Bonn (Germany)
- Jožef Stefan Institute (Slovenia)
- CERN
- Ohio State University (US)
- Submitted May 2007
- Approved Feb 2008
- Technical Decision 2010

Diamond Pixel Modules for the High Luminosity

ATLAS Inner Detector Upgrade

ATLAS Upgrade Document No: Institute Document No:

Creaged: 15/05/2007 Page: 1 of 14 Modified: 21/12/2007 Rev. No.: 1.8

Abstract

The goal of this proposal is to construct diamond pixel modules as an option for the ATLAS pixel detector upgrade. This proposal is made possible by progress in three areas: the recent reproducible production of high quality polycrystalline Chemical Vapour Deposition diamond material in wafers, the successful completion and test of the first diamond ATLAS pixel module, and the operation of a diamond after irradiation to 1.8×10^{16} p/cm². In this proposal we outline the results in these three areas and propose a plan to build 5 to 10 ATLAS diamond pixel modules, characterize their properties, test their radiation hardness, explore the cooling advantages made available by the high thermal conductivity of diamond and demonstrate industrial viability of bump-bonding of diamond pixel modules. Based on availability and size polycrystalline Chemical Vapour Deposition diamond has been chosen as the baseline solution. The use of single crystal Chemical Vapour Deposition diamond is reserved as a future option if the manufacturers can attain sizes in the range IOmm x IOmm.

Reference \rightarrow ATU-RD-MN-0012, EDMS ID: 903424

All steps from polished sensor to bump bonding performed at IZM
 Bump-bonded sent to Bonn for dressing: flex, services
 1st module to be built by industry

• Edge of diamond left metalized

Industrialization: Damage

- Diamond edge was left metalized \rightarrow Module shorted out with 10V bias
- 7/16 FE chips were damaged
- Returned to IZM for re-build
 - visible damage to FE chips
 - All FE chips replaced
 - Diamond cleaned, re-metalized
 - Improved edge treatment

Successful rebuild -> recycling diamond sensors works Module is currently in test beam at CERN

Diamond Module Plans

- Re-test ATLAS pixel modules at CERN Done
- Continue irradiations of pCVD and scCVD diamonds
 - > Map out damage curves for many particle types and energies
 - Status: In Progress!

Industrialization of module production – In progress

- > 1st module produced in industry
- Currently in Test beam at CERN

Produce 5-10 Modules – Ongoing

- > 4-16 Chip FE-I3 modules to be built
- 4-1chip FE-I4 modules: waiting for FE-I4

Festing Modules

- > Beam tests of production modules
- Fest radiation hardness of produced modules

Charge & Resolution vs. Bias Voltage

Collected Charge vs. Dose

•Both diamond and electronics irradiated

- •Raw ToT values per hit, "online" plots \rightarrow no tracking yet
- •Global ToT calibration: 30ToT = 10ke
- •One hit and multiple hit events visible
- •Charge sharing decreases as bias voltage increases

Irradition Results: Charge Collected BEFORE irradiation (f_T= 0.7 x 10¹⁵ p/cm²)

July 08 - MPV of charge collected October 06 - MPV of charge collected 1 hit 1 hit Entries 56 Entries 34 Entries Entries 22 22 9041 Mean 1.16e+04 Mean 20 20 RMS 103.7 RMS 63.51 18 18 χ^2 / ndf 2.758 / 1 χ^2 / ndf 16.19/2 Constant 66.74 ± 14.17 16 16 Constant 96.93 ± 19.40 MPV 9025 ± 41.9 14 14 MPV 1.154e+04 ± 13 Sigma 95.65 ± 23.16 12 12 Sigma $\textbf{36.06} \pm \textbf{5.33}$ 10 10 ക്ൽ 4000 7000 8000 9000 10000 11000 12000 13000 11000 11500 12000 9500 10000 10500 12500 13000 Signal Signal

MPV of Charge Collected: ≈ 11540e
MPV of TOT : ≈34.6
Bias: -400 V
Th= ~1700e

MPV of Charge Collected: ≈ 9025e MPV of TOT : ≈27.6 Bias: - 800V Th= ~1470e

Only data from events with a single hit in each of the telescope planes are selected.

Properties of Diamond and Silicon

Property	Diamond	4H-SiC	Si
Band Gap [eV]	5.5	3.3	1.12
Breakdown field [V/cm]	10^{7}	4×10^{6}	3×10^5
Resistivity [Ω-cm]	$> 10^{11}$	10^{11}	2.3×10^{5}
Intrinsic Carrier Density [cm ⁻³]	$< 10^{3}$		1.5×10^{10}
Electron Mobility [cm ² V ⁻¹ s ⁻¹]	1800	800	1350
Hole Mobility [cm ² V ⁻¹ s ⁻¹]	1200	115	480
Saturation Velocity [km/s]	220	200	82
Mass Density [g cm ⁻³]	3.52	3.21	2.33
Atomic Charge	6	14/6	14
Dielectric Constant	5.7	9.7	11.9
Displacement Energy [eV/atom]	43	25	13-20
Energy to create e-h pair [eV]	13	8.4	3.6
Radiation Length [cm]	12.2	8.7	9.4
Spec. Ionization Loss [MeV/cm]	4.69	4.28	3.21
Ave. Signal Created/100 μ m [e]	3600	5100	8900
Ave. Signal Created/0.1% X_0 [e]	4400	4400	8400

Advantages:

- Low leakage current
- No doping necessary
- Radiation hard
- Low capacitance
- High thermal conductance
- Room temperature operation
- High Mobility/fast signal collection

Disadvantages:

• 50% signal of Si for the same radiation length

Work in Progress 2009:

 ♦ Irradiations already performed awaiting test beam: Sendai - 10¹⁵, 10¹⁶ 70MeV protons/cm² Ljubljana - 10¹⁶ neutrons/cm²

Irradiations in progress:

Karlsruhe - 25MeV protons

In diamond 70MeV protons have \sim 3x larger damage constant than 24GeV

- Predict hit position with telescope
 (~5 µm resolution at diamond)
- > Look within 100 μ m of the prediction