

SABRE PoP Status report

Chiara Vignoli SABRE Collaboration meeting

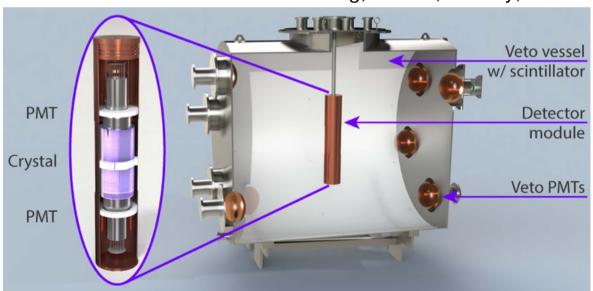
LNGS October 4, 2017

SABRE: Sodium Iodide with Active Background Rejection Project

Goal:

- 1. Search for Dark Matter through the annual modulation of the experimental rate with Nal (TI) crystals detector with an active veto.
- 2. Test of DAMA results

Strategy:


- Lower background (high purity crystals, low-radioactivity set-up, employ liquid scintillator veto/shielding)
- Lower threshold (high QE PMT directly coupled to crystals, lower HV to reduce dynode afterglow)
- Twin Detectors in Northern and Southern hemispheres (to reduce seasonal effects)

Project phases:

- PHASE I: SABRE PoP (1 crystal) ongoing, funded by INFN (2 years: 2016-2017, now extended for a further year) and NSF
- PHASE II: SABRE full scale experiment
 - SABRE North @ LNGS (to be proposed after PoP)
 - SABRE South @ SUPL in Australia (underground lab and detector in preparation)

PHASE I: SABRE PoP detector

- Crystal weight: ≈ 5.5 kg
- Crystal PMTs : High-QE 3" flat Hamamatsu R11065-20
- LS Veto PMTs: 8" Hamamatsu R5912 HQE LRI
- Vessel: 1.3 m diameter 1.5 m length
- Liquid scintillator: PC+PPO (3g/l) ≈
 2.25 m³ Weight ≈ 2 ton

Target: ultra--pureNal (TI) crystals: ^{nat}K ≤10 ppb, Rb≤0.1 ppb, UeTh<1ppt Goal achieved in 2 kg crystal (PU + RMD Company) grown with Astrograde powder, measured by ICP-MS

-> see talks of Greg, Tiziano, Lindsay, Francesco

SABRE PoP responsibilities

MoU on PoP

Memorandum	of Understanding
Memorandum	or onderstanding

for the Construction and Operation

of the SABRE Experiment

between

Australian Nuclear Science and Technology Organisation, ANSTO, Australia Australian National University, ANU, Australia Istituto Nazionale di Fisica Nucleare, INFN, Italy Pacific Northwest National Laboratory, PNNL, USA Princeton University, PU, USA Swinburne University of Technology, SU, Australia University of Adelaide, UA, Australia

University of Melbourne, MU, Australia

Preamble

The SABRE project aims at searching for dark matter in the Galactic halo through the annual modulation effect. The plan of the SABRE project is to deploy twin detectors consisting of an array of ultra-pure Nal(TI) scintillating crystals immersed in a liquid scintillator acting as a veto in two separate underground locations in the two hemispheres: at the Gran Sasso National Laboratory, LNGS, in Italy (SA-BRE North) and at the Stawell Underground Physics Laboratory (SUPL) in Australia (SABRE South).

As a first step towards the full SABRE project, a SABRE Proof of Principle (PoP) phase is envisaged. The PoP is intended to develop high-purity Nal(TI) crystals and to test them using an active liquid scintillator veto. The goal of the PoP is to achieve an overall significant lowering of detector background in the energy region of interest, where the annual modulation is observed by the DAMA/LIBRA experiment at LNGS (namely 2-6 keVee). Nominally the goal is to achieve a factor of 10 lower, than that achieved in the DAMA/LIBRA experiment. The PoP setup will be deployed and operated at LNGS in Gran Sasso, Italy.

This document provides the Memorandum of Understanding (MoU) for the PoP preliminary project. Because planning is underway for both SABRE South and SABRE North, a preliminary MoU agreement for the full-scale SABRE South is also provided in Annex 7 in the form of an agreement to cooperate, with all financial commitments

Funding Agency	Institution	INFRASTRUCTURES	SHIELDING	FLUID HANDLING	SAFETY	CRYSTALS	РМТѕ	ENCLOSURE	CIS	VESSEL	ELECTRONINCS & DAQ	CALIBRATION SYSTEM	SLOW CONTROL	COMPUTING & SW	MC SIMULATIONS	DATA HANDLING & ANALYSIS	R&D
INFN	INFN	Х	х	х	х			х	х		х	х	х	х	х	х	х
NSF	Princeton			х		х	х			х	х		х	х	х	х	х
DOE	PNNL																
ARC	Melbourne										х	х			х	х	х
	Adelaide										х		х			х	х
	ANU										X	х			х	X	X
	Swinburne																
	ANSTO																

SABRE PoP Funding

- NSF: Extended: 2016 Grant 320 k\$
- DoE: 2016 Grant 1 M\$ per RMD (crystal growth)
- INFN:

2016 (Total): 256,5 k€ 2017 (Total): 238,5 k€ 2018 (First Assignment): 158 k€ + 26 k€ anticipated to 2017 -> see talk of Davide

+ in-kind ≈ 18 tons of Lead + Pb refurbishment (≈ 22 k€)

+ hosting laboratory + general infrastructures + technical support

SABRE PoP site @ LNGS

FIRST APPROVED SITE (Oct 2015): HALL B NORTH

AFTER UNDERGROUND LAB REORGANIZATION (February 2016) NEW LOCATION FOR SABRE PoP -> CHANGE OF SHIELDING DESIGN & INFRASTRUCURES

New site: Hall C near BX storage area, preferred location for safety and the use of BX plants.

OFFICIALLY DEFINED & ASSIGNED: May 12, 2017

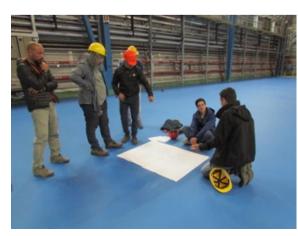

SABRE PoP Hall C Site

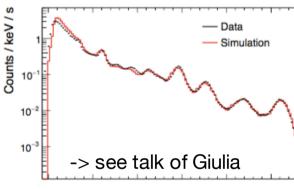
Temporary site: Hall B South, available for preliminary activities.

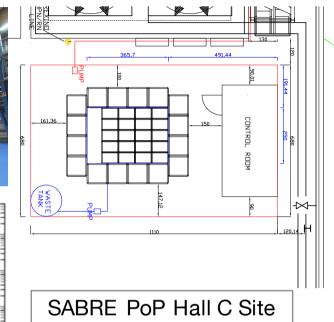
ASSIGNED: April 2016

Hall B SABRE area was equipped with minimum tools and infrastructures: barrack, network, power cabinets, phone line. Veto tests ongoing.

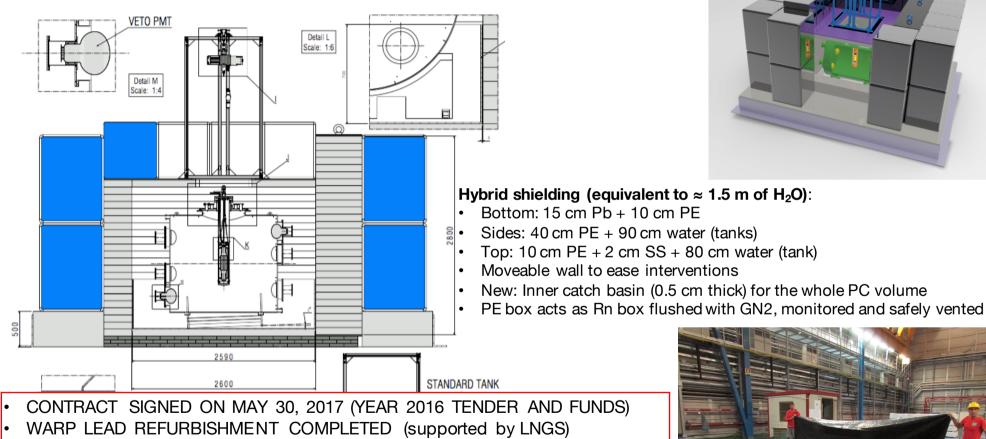
SABRE PoP Hall B temporary location




Hall C site preparation


- "OPERA site" floor refurbishment: May 11, 2017.
- SABRE PoP final site definition and assignment: May 12.
- Floor planarity check, positioning of anchoring system and self-levelling resin: June 21.
- Barrack positioning: June 27.
- Installation shielding bottom (Pb): July 3.
- Electrical plant and network: ongoing.
- UPS plant: under discussion (missing)
- Hall C gamma BG characterization: done.

occupation approved


Available shielding components 5

SABRE PoP external shielding

Credit to D.Orlandi, C.Zarra & LNGS

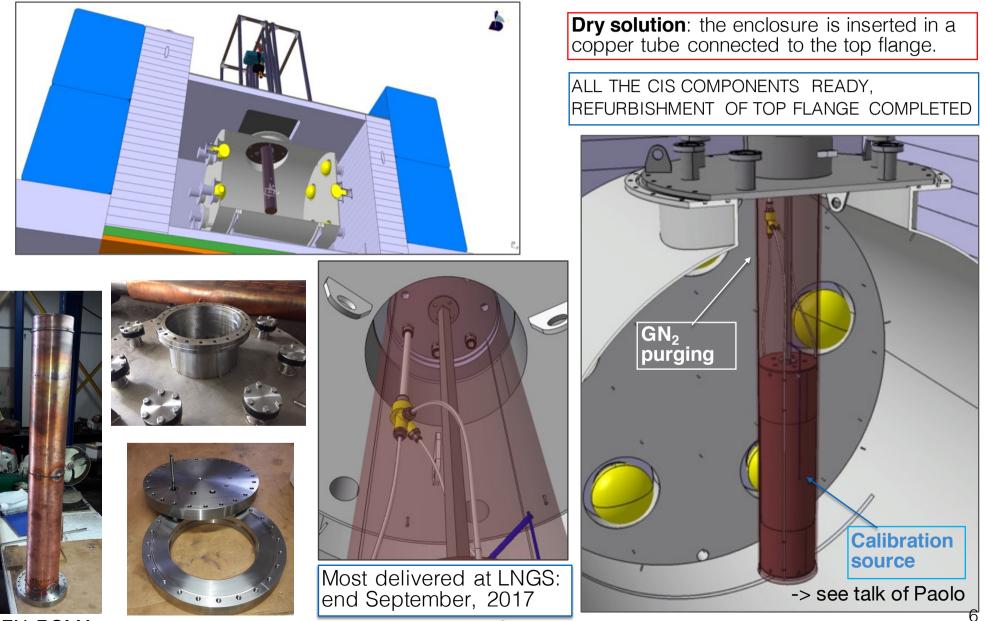
FINAL DESIGN FOR THE HALL C SITE INTEGRATED WITH CRYSTAL INSERTION SYSTEM AND NEW CATCH BASIN

- MATERIAL APPROVED (ACTIVITY MEASURED) AND MOUNTED
- PE MEASUREMENT COMPLETED & APPROVED, COMPONENTS MACHINED
- SS SAMPLE MEASUREMENT DONE, 2ND SAMPLE WORSE, 1ST APPROVED

PE + catch basin done, top SS plate to be produced Expected delivery: October 15, 2017

Radioactivity measurement of shielding materials @ LNGS

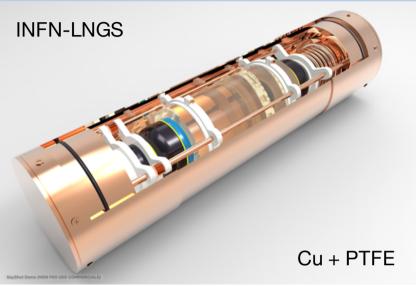
Credit to M. Laubenstein


Meterial	Refurbished Pb	PE	SS Sample n.1	SS n.2 Sample n.2
Material	[mBq/kg]	[mBq/kg]	[mBq/kg]	[mBq/kg]
Ra228	< 0.36	< 0.72	2.6 ± 0.5	2.8 +- 1.2
Th228	< 0.39	0.8 ± 0.2	7.7 ± 0.6	15.9 +- 1.5
Ra226	< 0.15	1.4 ± 0.3	2.4 ± 0.3	3.5 +- 0.6
Th234	< 4.7	< 9	< 63	< 400
Pa234m	< 9.7	< 4.4	29 ± 16	< 180
U235	< 56	< 0.81	1.0 ± 0.4	< 4.9
K40	< 1.8	< 5.9	1.5 ± 0.7	< 4.6
Cs137	< 2.0	< 0.28	< 0.26	< 0.62

-> see talk of Paolo

CIS (Crystal Insertion System)

-> see talk of Valerio Pettinacci



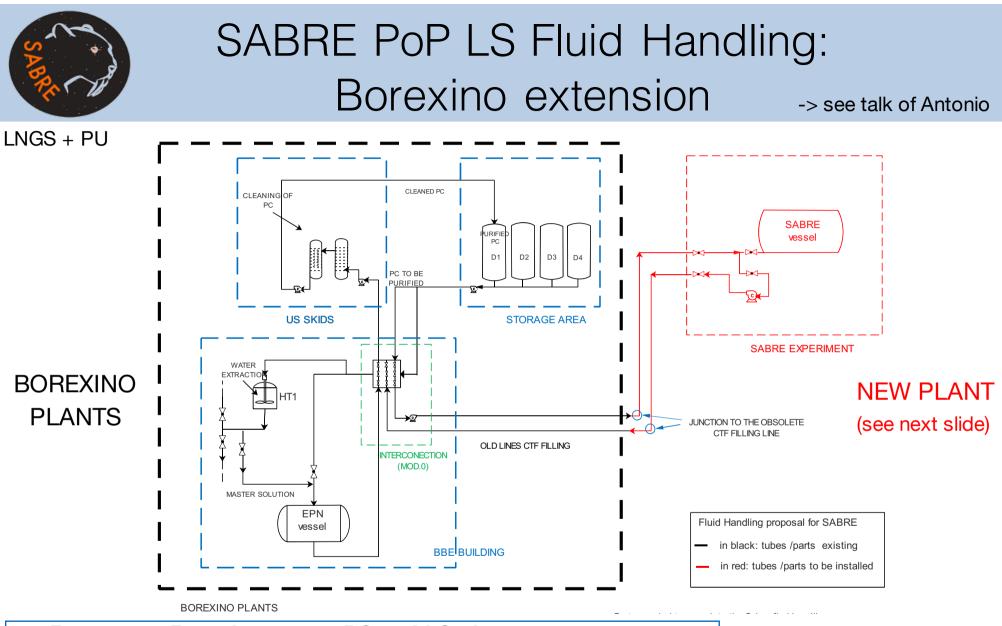
INFN-ROMA

Crystal Enclosure + Mock-up

-> see talk of Simone and Donato

High purity OFHC Cu (shell from CUORE Cu) enclosure:

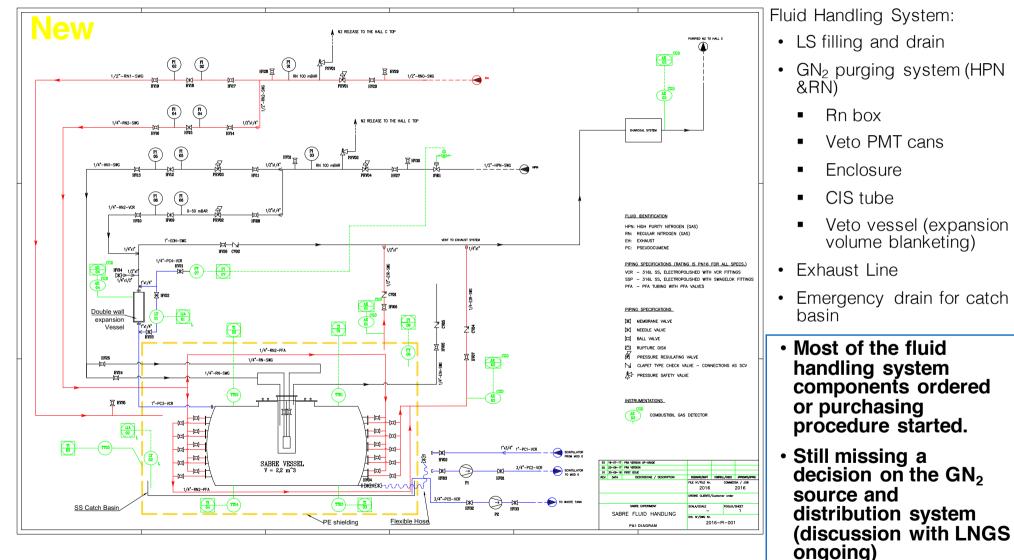
- fit to the final 5-kg crystal with flexibility
- stable mechanical and optical coupling
- assembly in glove box
 - vacuum tight / purgeable with GN₂ (Rn/H₂O removal)
- reduce material between crystal and LS veto
- First crystal will be mounted at PU
- > A glove box has just been funded by INFN (2018)
- > A second enclosure too (for another crystal)


Test with Mock-up: -> DESIGN UPGRADED

Cu shell in production. Enclosure delivery: mid Oct 2017

- Request to Borexino to use PC and LS plants.
 Formal approval needed (including all the plant requests)
- Safety review done (as required also by BX).
- Not increased PC quantity (PC already present in Hall C).
- SABRE decoupled from BX after commissioning.

Credit to BX Collaboration 10


SABRE PoP plant P&I

-> see talks of Antonio and Lidio

 Slow Control system project in preparation,

11

to be acquired.

New design, safety reviewed

Credit to L.Ioannucci

SABRE PoP Safety and Environment

-> see talks of Antonio

PRA (Preliminary Risk Analysis) documents APPROVED

SABRE PROJECT SABRE ACC SABRE PROJECT: Pop PRELIMINARY RISK ANALYSIS SABRE PROJECT SABRE Collaboration Hellow Nacional del Fride Nuclaure Laboratori Nacionali del Gran Sabo Sabre Sabri Cambri Anger Sabre Sabre Sabri Cambri Anger Sabre Sabre Sabri Cambri Anger Sabre Sabre Sabri Cambri Anger Sisk Analysis INTO ALESS	NIER
First synchion date: April 30, 2015 Second version date (revision.)): September 21, 2016 Revision namber: 2 Late revision date: Constor: 38, 2016	The SABRE Collaboration
<text><text><text><text><text><section-header><list-item><section-header><section-header><section-header><section-header><section-header><list-item><list-item><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></list-item></list-item></section-header></section-header></section-header></section-header></section-header></list-item></section-header></text></text></text></text></text>	3 August 2017 Perdininary Risk Atalysis NHER NHER 2 Jaky 2017 Perdininary Risk Atalysis NHER NHER 2 Jaky 2017 Perdininary Risk Atalysis NHER NHER 1 Jaky 201
INTERNAL PRA Oct 28, 2016	EXTERNAL PRA (NIER) Aug 3, 2017

- SABRE PoP approach to improve safety: no increase of PC underground, use of catch basin, dry solution for CIS.
- Approval for vessel shipment: Aug. 2016 (built in US)
- Approval by Safety Service Head of catch basin for 1/3 of volume: Aug. 2016. A concern was raised later by Environmental Service Head.
- Environmental Safety Review first audit: Feb. 8, 2017
- **External Safety Review required end 2016:** contract assigned to Nier Company end of March 2017.**NIER PRA analysis** first version received on Jun 20, 2017. Revision 3: August 3, 2017:
 - 1. Big simplification of SABRE safety plants if catch basin capacity is increased to the total PC volume
 - 2. 3 top events: PC leak inside PE shielding or in Hall C, $N_{\rm 2}$ release in Hall C

BELOW THE CREDIBILITY THRESHOLD

- 3. No suggestion of further analyses (QRA, Atex,...); fire event not credible; no need of a blow down system;
- > New catch basin equipped with pump for emergency
- > Expansion volume with double containment
- > New version of DCS and P&I with few blocking valves
- Positive feedback and PRA approval from LNGS (Sep 14, 2017), except minor details: New PRA Rev4.
- GN₂ system to be defined with LNGS Tech. Coord.
- Procedures to be presented ("Water protocol").
- Two more documents to be prepared for fire risk: "SCIA" & "Non aggravio di rischio" (ext consultant). ¹²

SABRE PoP: PRA Top Events

-> see talks of Antonio and Lidio

ALARP matrix

CONSEQUENCE→ FREQUENCY↓	LETHAL/IRREVERSIBLE EFFECTS	MAJOR EFFECTS	SERIOUS EFFECTS	MINOR EFFECTS	NO RELEVANT EFFECTS
FREQUENT (> 1 y ⁻¹)					
PROBABLE $(1 e^{-1} y^{-1} - 1 y^{-1})$					
OCCASIONAL (3 $e^{-2} y^{-1} - 1 e^{-1} y^{-1}$)					Event 1b.1
REMOTE $(3 e^{-3} y^{-1} - 3 e^{-2} y^{-1})$					
IMPROBABLE (3 $e^{-4} y^{-1} - 3 e^{-3} y^{-1}$)					
EXTREMELY IMPROBABLE $(< 3 e^{-4} y^{-1})$		Event 1a Event 1b.2 Event 1c.2 Event 1c.3 Event 1c.4	Event 1c.1	Event 1b.3	Event 2

ALARP matrix (As Low As Reasonably Practicable) risk evaluation criteria

- Frequency:event frequency of occurrence;
- Consequence: effects on human health and safety

the risk associated to an event is:

- Unacceptable (red)
- Tolerable (yellow)
- Acceptable (green)

Suggestions

Top Events	Considerations and suggestions				
1a - Scintillator vessel overpressure	I	No additional devices/solutions could be considered for improvement			
	П	Disposal of the liquid scintillator released, carried out without opening the PE Shielding, should be ensured as fast as possible			
1b - Scintillator (PC+PPO) release inside PE Shielding		Constant nitrogen flushing, carried out also with nitrogen emergency supply through the manual valve HV35, should be ensured if a scintillator release happens			
		Disposal of the liquid scintillator released should be ensured as fast as possible			
1c - Direct Scintillator (PC+PPO) release in Hall C	v	Valve with high performance packing should be used			
2 - Direct Nitrogen release in Hall C	VI	Valves number on the nitrogen supply lines should be reduced as much as possible			

For most events, the frequencies are lower than the credibility threshold and, for the "Scintillator release in Hall C", the expected consequences are also not critical because:

- the maximum quantity of scintillator could be released from doublewalled expansion vessel is about 20 litres;

 the potential scenarios of pool fire or flash fire or VCE are characterized by a frequency lower than the credibility threshold (see Figure 6 – ETA Consequences of Scintillator direct release in Hall C).

This conclusion may be extended to the Top Event 2, although the value of frequency is higher than the credibility threshold and the fact that a direct release is ever-present during the normal operation. Indeed the maximum nitrogen stream will be always much lower (2 m3/h) that ventilation rate guarantee by the ventilation system (7000 m3/h).

SABRE PoP Veto tests

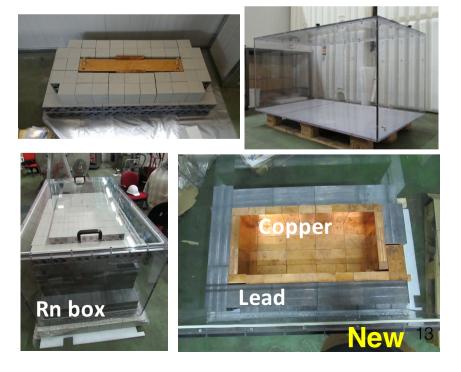
-> see talks of Suerfu, Simone and Davide

- August 2016: Vessel transport approval to LNGS
- November 2016: Vessel delivered to LNGS
- **Begin of March 2017**: Veto PMTs, electronics and DAQ delivered to LNGS and mounted
- **Since March 2017**: Dry test phase started with veto vessel equipped with 10 PMTs + lumirror, electronics and DAQ:
 - 1. Light tightness
 - 2. PMTs characterisation (dark counts, gain,...)
 - 3. Test with light source (LED+pulser)
 - 4. Scintillator cell/BGO crystal + Nal crystal tests
 - 5. Test of DAQ and trigger
 - 6. Reconstruction and SW tools developments
 - 7. Computing, data handling and storage
- > Water test to be discussed
 - Tightness test (PMT installation)
 - Veto test with Cherenkov light

Mounting of veto PMTs

Hall B Crystal/PMT test facility

-> see talk of Simone


A passive shielding test facility was installed in Hall B.

Versatile and flexible set-up to test:

- PMTs in the final configuration (dark count, afterglow,...)
- · voltage dividers and pre-amp solutions
- DAQ options, trigger and digitizer tests
- new crystals (light yield, calibration, PSD, ...)

It can hold up to two crystal enclosures —> possibility to perform crystal intrinsic background measurements in coincidence mode

Useful for pre-commissioning tests of crystal before inserting inside the veto

SABRE PoP Nal(TI) Crystal

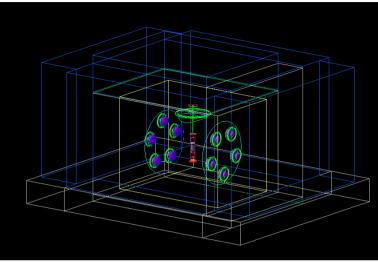
-> see talks of Frank and Suerfu

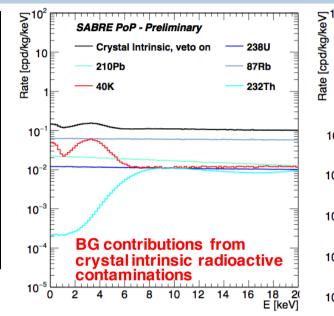
Producer: Princeton University & RMD Company (Boston)

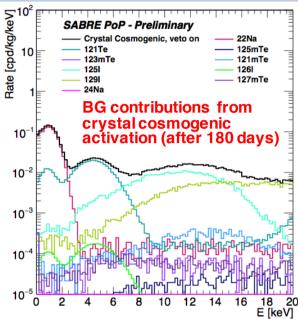
- Starting point: Astrograde powder by Sigma Aldrich with 9 ppb in ^{nat}K.
- In fall 2015 RMD has grown a 2 kg crystal (3.5" diameter) with:
 - 9 ppb ^{nat}K (same as starting powder)
 - < 0.1 ppb ⁸⁷Rb

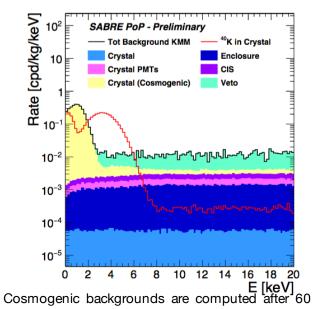
measured by ICP-MS, for the first time below DAMA ([K]~13 ppb, [Rb]<0.35 ppb)

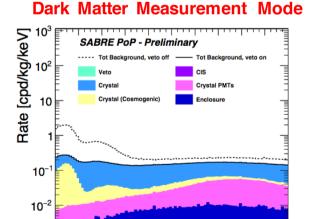
- The activity since then has focused on:
 - growing a full scale 5-kg crystal (≈ 4" diameter)
 - improving procedures for crystal growing (powder drying, crucible purity, ...)
 - **defining procedure for crystal handling** (polishing, crystal mounting and handling inside the enclosure in glove box)
 - Facilities at PU: new glove box installed inside Rn free clean room
 - ✓ Unfortunately experienced some setbacks, now understood and solved (crucible and crystal grade powder)
 - ✓ RMD funded by DoE (1 M\$) -> extra 50 kg of Astrograde powder 3 ppb in K
 - ✓ Successful test of growth of full scale crystal in August 2017
 - > 1st crystal with RMD standard grade crucible: Oct 3
 - 2nd crystal grown with PU high purity crucible: within Nov.








SABRE Montecarlo simulations



Potassium Measurement Mode

10⁻³

10-'

0

2

6 8

4

والأنبو والمتحاد والتناوين التناوير

10 12 14 16 18 20

E [keV]

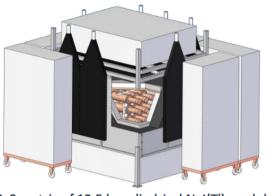
Full simulation of SABRE PoP

PoP Milestones Schedule

Milestones completion		Date
1. Veto vessel dry commission	ng (Hall B)	July 31 st , 2017
2. Hall C Site available		May 12 th
3. Lower Lead shielding		July 3rd
4. PRA approval by LNGS		Sep 14th
5. CIS delivery to LNGS		Sep 20th
6. Crystal enclosure delivery to	LNGS	Oct 15 th
7. PE + SS +catch basin+ wate	r tanks shielding delivery to LNGS	Oct 15 th
8. PE shielding installation in H	all C	Oct 31th
9. Veto vessel cleaning + Lumi	rror + PMTs installation in Hall C	Oct 31th
10. Electronics + DAQ installation	n in Hall C	Oct 31th
11. Crystal insertion system insta	allation inside the veto vessel	Nov 10th
12. Fluid handling installation in	Hall C	Nov 30th
13. 5 kg crystal growth @ RMD		Oct 3nd
14. Crystal enclosure delivery to	PU	Oct 31th
15. Crystal-PMT installation in er	nclosure in glove box @ PU	Nov 15th
16. Crystal shipment to LNGS		Nov 30th
17. Crystal installation in the ves	sel	Dec 10th
18. LS preparation (to be done in	n advance, BX activity)	???
19. Veto commissioning		End 2017
20. PoP run		2018

SABRE PoP Conclusion & Future Prospects

- Setbacks in crystal growth, in combination with delay of site allocation and availability, and in purchase orders, such as external shielding, have introduced several months of delay.
- A new 5-kg crystal growth is expected to finish in early October, and a second in November, 2017.
- Fluid operations have been blocked by Laboratory management but the new agreement with Regional Authorities, should allow cleaning soon, and scintillator operations soon after that.
- The SABRE safety review is complete. With approval of existing fluid handling procedures, scintillator operations should be possible.
- Most of the major components of the PoP set-up are either already available at LNGS, or ordered for delivery in October or November..
- Provided there are no further delays, we expect to assemble the PoP detector and begin commissioning by the end of 2017.
 - > A second crystal could be measured too.
- Milestone 2018: proposal of SABRE North Full Scale Experiment -> FSE start in 2019
 - > SFE design, R&D and improvements


International Competition

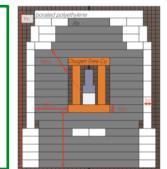
ANAIS-112 @ Canfranc (Spain) Setup: 9 x 12.5 kg crystals (112.5 kg). Muon tagging. Gamma (lead, also ancient), Anti-Rn box and neutron (PE) shielding. Data taking started Aug 2017

COSINE-100 @ YangYang (South Korea)

Joint collaboration between DM-Ice and KIMS Setup: 8 crystals (TOT 106 kg). Muon tagging. Gamma (3cm Cu + 20 cm Pb) shield LS veto (~ 2000 | LAB) Data taking started Sep 2016

3x3 matrix of 12.5 kg cylindrical NaI(TI) modules (112.5 kg of active mass)

- Alpha Spectra crystals: 40K and 22Na peaks and 210Pb (bulk+surface) and 3H continua are the most significant contributions in the very low energy region.
- $bkg \sim 4 cpd/kg/keV$ (single hit)
- Outstanding light collection: ~15 phe/keV


threshold: 1 keV (trigger), 2 keV (sensitivity)

bkg 2-4 cpd/kg/keV (single hit)

- Alpha Spectra crystals: depending on crystal -> limited by the intrinsic radio purity of the crystals
- threshold: 2 keV (goal is 1 keV)
- R&D for COSINE-200 powder purification and crystal growth facility @ IBS in Korea (mass production facility for purification under construction)

- PICOLON @ Kamioka
- •3" ϕ x 3", 4" ϕ x 3" crystal for bkg reduction study
- •5"φ x 5" crystal for realistic DM measurement
- •5"φ x 5" x9 modules for test of DAMA signal
- •5"φ x 5" x42 modules inside KamLAND for DM search

•1 PMT/crystal

- Only 3"x3" and 4"x3" detectors were tested so far. $5^{\circ}\phi \times 5^{\circ}$ Nal(Tl) is under crystallization.
- Concentration of 210Pb 24 \pm 2 μ Bg/kg in 3"x3" crystal but not reproduced in 4"x3" one. 40K still high (~130ppb). ٠
 - bkg 3-4 cpd/kg/keV in 4"x3" (single hit)
 - Development to Hamamatsu 4" PMTs