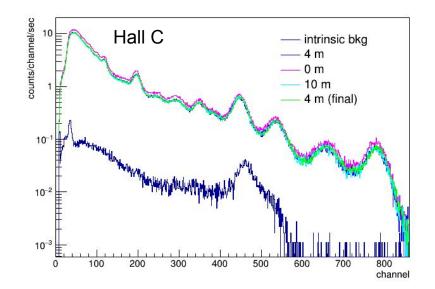


External gamma background al LNGS

<u>Giulia D'Imperio</u>^a, Giuseppe Di Carlo^b, Ambra Mariani^c, Paolo Montini^c, Claudia Tomei^a ^a INFN Roma 1 ^b LNGS ^c Università La Sapienza and INFN Roma 1

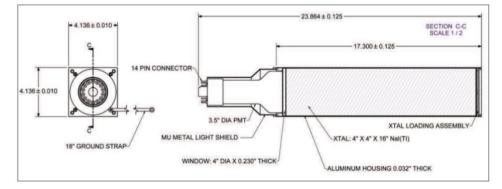
SABRE General Meeting, 4-6 October 2017, LNGS

External gamma bkg estimate


- 1. Radioactivity measurement in the rock:
 - Measure the background with a Nal detector in Hall B and Hall C
 - → Calibrate spectrum and extract experimental resolution
 - Use a GEANT4 simulation of the experimental setup to generate radioactive decays in the rock
 - Apply the experimental resolution to MC
 - Deconvolve the experimental spectrum to obtain radioactivity in the rock
 - → comparison with literature when possible
- 2. Estimate the gamma background for SABRE
 - Use a GEANT4 simulation of the SABRE setup to generate radioactive decays in the rock
 - Normalize with radioactivity measurements from step 1
 - → Prediction of the background for SABRE and shielding attenuation

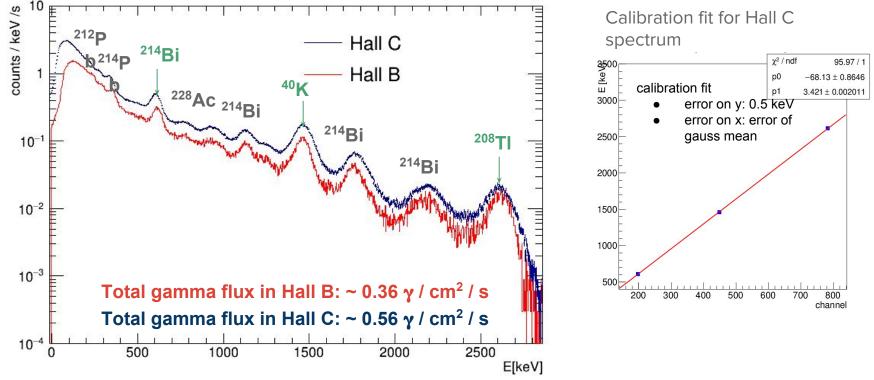
Analysis documented in an internal note available on SABRE wiki page.

External gamma measurements


4"x 4"x 16" Nal(TI) crystal coupled to a 3.5" diameter photomultiplier tube (PMT) inside aluminium case.

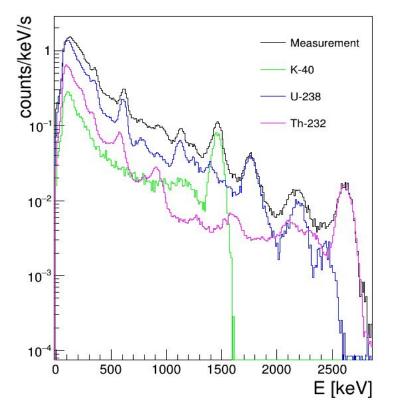
- Hall B : measurements at different height done in 2015
- Hall C : measurements at different distance from Borexino wall (0,4,10 m), done in 2017
 no significant difference observed between different configurations

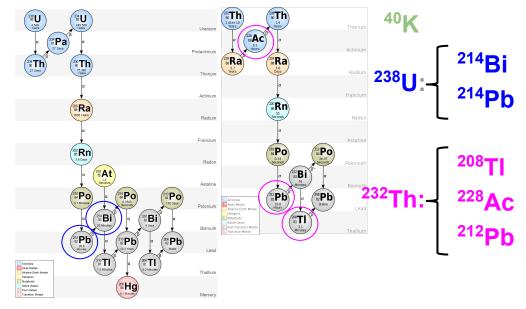
Nal(TI) scintillation detector series 905-16, Ortec


905-16 Nal Scintillation Detector, 4- x 4-in. crystal, 3-in. tube

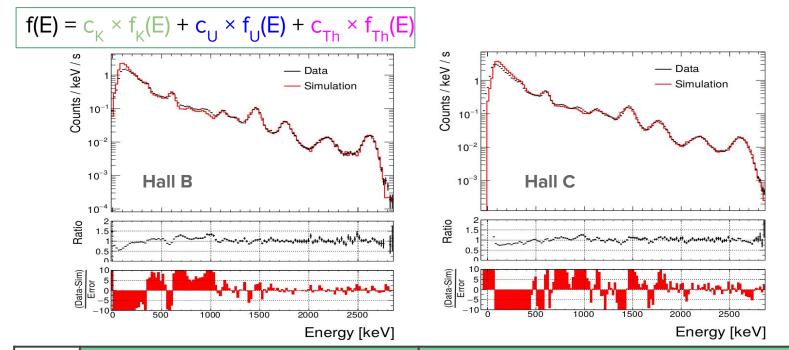
Hall B and Hall C calibrated spectra

- Gammas mostlly from **K**, **U** chain and **Th** chain
- The spectrum has been calibrated using 609 (²¹⁴Bi), 1461 (⁴⁰K), 2615 (²⁰⁸TI) keV lines
- The resolution is slightly different between the Hall B and C measurements because the Nal detector was not the same
- For the second crystal (Hall C measurement) we also made a measurement of intrinsic background
 background subtraction

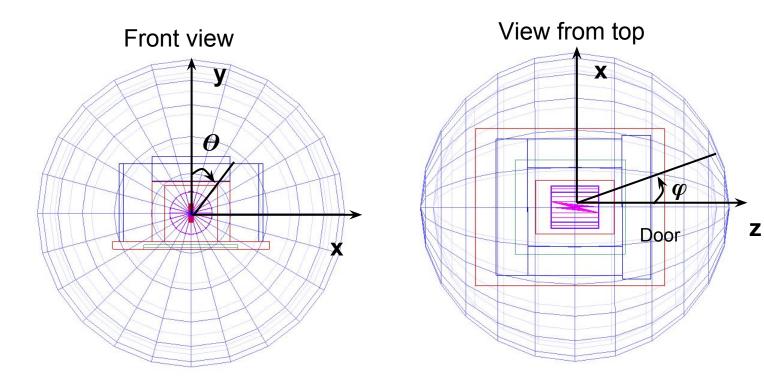



Deconvolution of the measured gamma spectrum

 $f(E) = c_{K} \times f_{K}(E) + c_{U} \times f_{U}(E) + c_{Th} \times f_{Th}(E)$

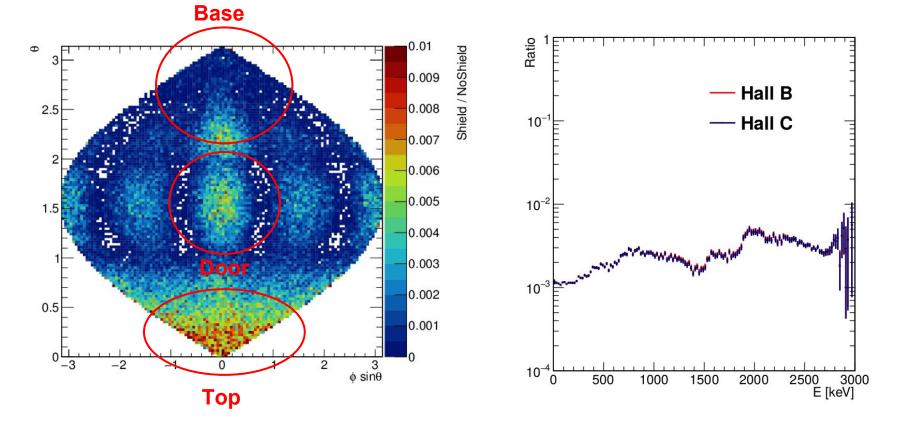

f → templates from simulation c → normalization, free parameters of fit Experimental resolution of the Nal detector is applied to Monte Carlo

We simulate only the isotopes of U and Th chains that produce most intense gammas

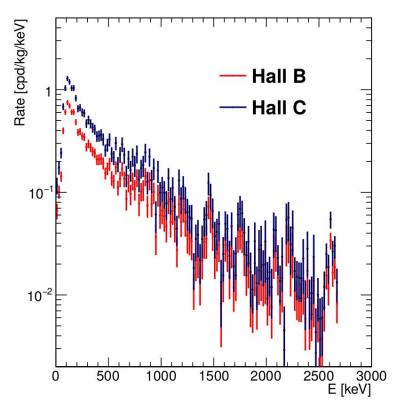

Spectrum fit

	Measurements		H. Wulandari et al. Astroparticle Physics 22 (2004) 313–322			
		Hall C [ppm]	Hall B [ppm]		Hall C [ppm]	
	Hall B [ppm]		Rock	Concrete	Rock	Concrete
к	7068 ± 90	12780 ± 70	10272	5377	10272	5377
U	0.56 ± 0.01	0.966 ± 0.004	0.42	0.66	0.66	0.66
Th	0.54 ± 0.01	0.840 ± 0.006	0.062	1.05	0.066	1.05

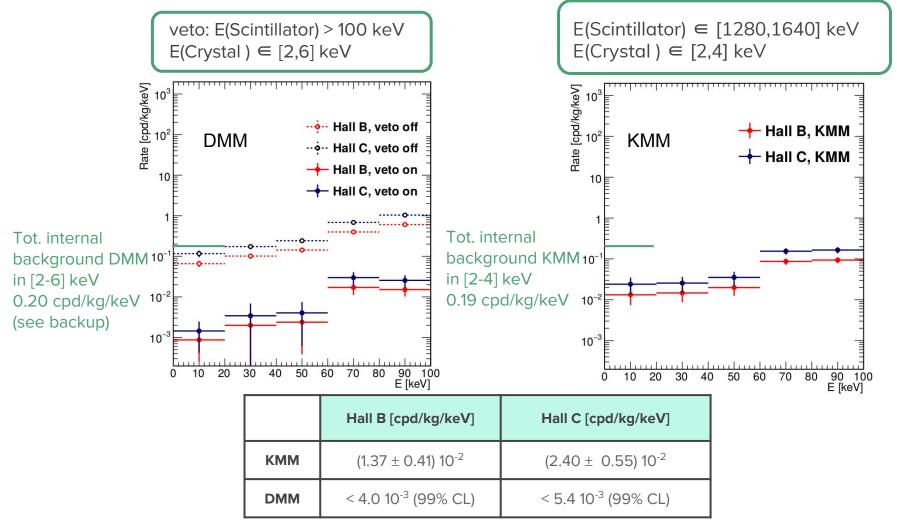
SABRE simulation


- Used SABRE MC official simulation
- Shielding design not the very final one but about the same amount of material
- Rock cavern simplified
 - → rock spherical shell of 40 cm thickness and 4.5 m internal radius in order to contain the shielding
- Input contaminations of ⁴⁰K, ²³⁸U and ²³²Th in the rock shell from previous slide

Shielding attenuation


Position of generated isotopes that deposit some energy > 0 in the liquid scintillator

Shielding attenuation vs Energy is estimated from the ratio of spectra in liquid scintillator with and without shielding

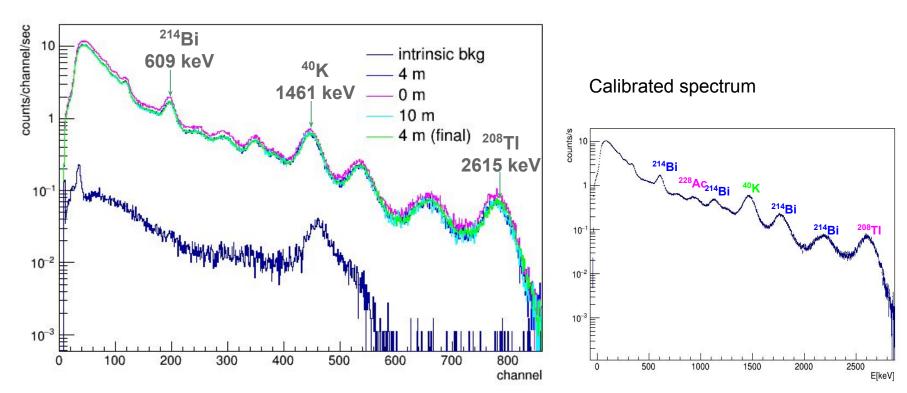

External gamma background for SABRE

- We didn't produce sufficient statistics to simulate the spectrum in SABRE crystal with the shielding
- The shielding attenuation obtained from the LS is applied to the crystal spectrum without shielding

SABRE background using veto

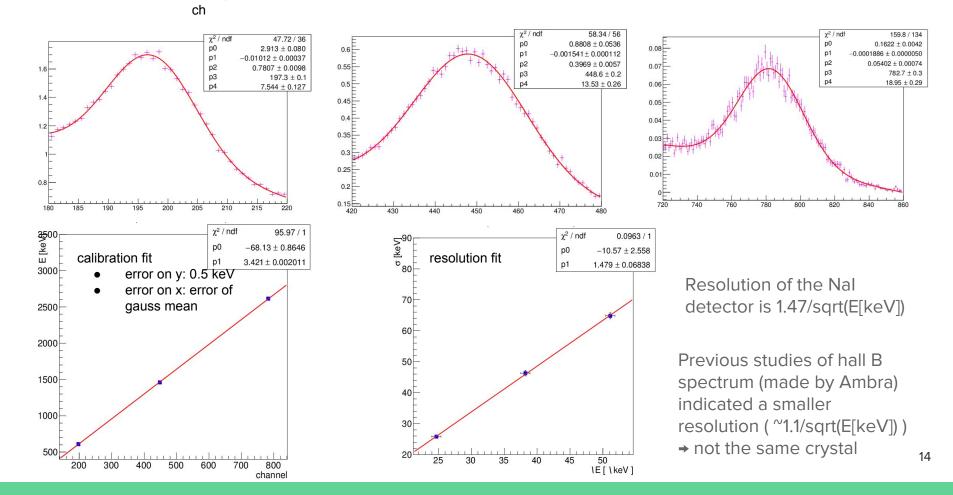
We can apply also the veto effect to obtain the background level for dark matter measurement mode (DMM) and for the K measurement mode (KMM)

Conclusions

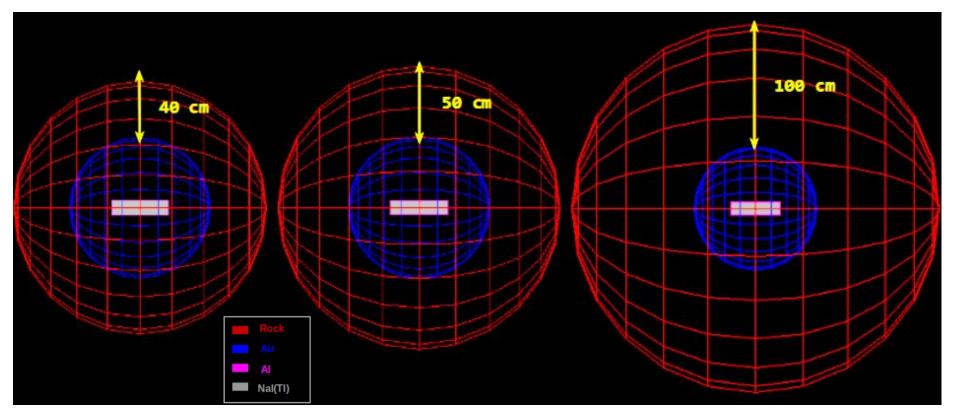

- Measured the external gamma spectrum in Hall B (temporary site for SABRE vessel) and Hall C (final site for SABRE PoP)
- Obtained a measurement of contamination in the LNGS rock
 - → compared with literature when possible and found compatible results
 - → Hall C has a higher gamma flux (0.56 γ /cm²/s) than Hall B (0.36 γ /cm²/s)
- Obtained a prediction for the SABRE external gamma background
 shielding attenuation between 10⁻² to 10⁻³
 - → last design of the shielding door (from 10 to 65 cm of PE) should improve the door shielding attenuation
- The expected background for SABRE crystal is factor ~50 below the other internal backgrounds for Dark matter measurement mode

Backup slides

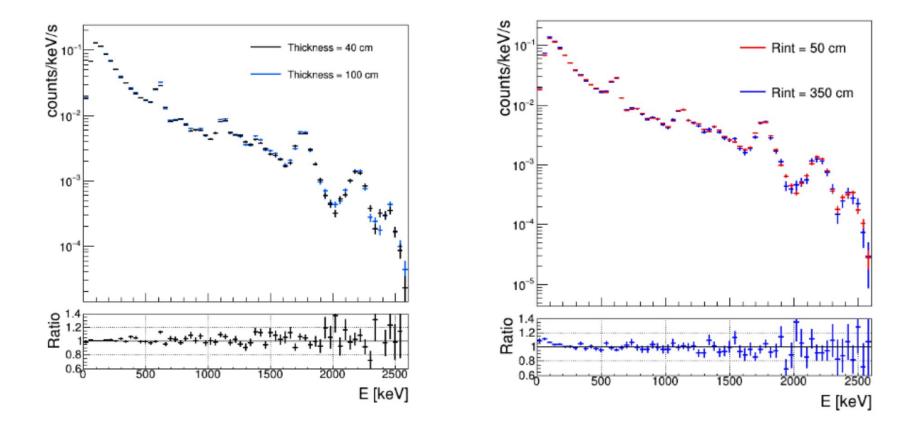
Spectrum calibration


Overlapped spectra taken at different distances and intrinsic background

- intrinsic counts, 10 cm Pb shielding (30 min)
- 4 m from Borexino wall (30 min)
- close to Borexino wall (30 min)
- 10 m from Borexino wall (30 min)
- 4 m from Borexino (90 min)

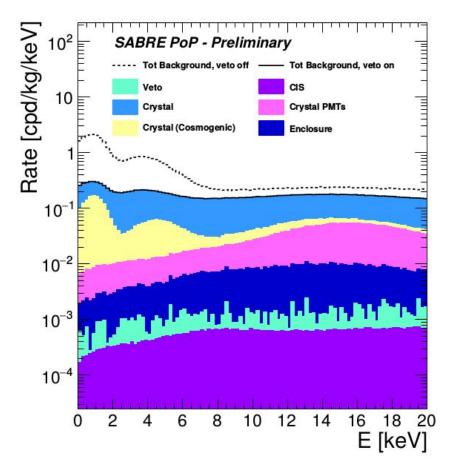

Spectrum calibration

- Slope + gauss fit to 609, 1461, 2615 keV lines
- Extract gauss mean and sigma using long run (90 min)
 - \circ Mean \rightarrow calibration fit
 - Sigma → resolution fit



Nal simulation

- Rock spherical shell
- Nal crystal of 4"× 4"×16" in aluminium case
- Test of spectrum dependency vs thickness and internal radius in order to maximize statistics
 - → difference between configurations within 10%
 - \rightarrow use R_{int} = 50 cm and thickness = 40 cm



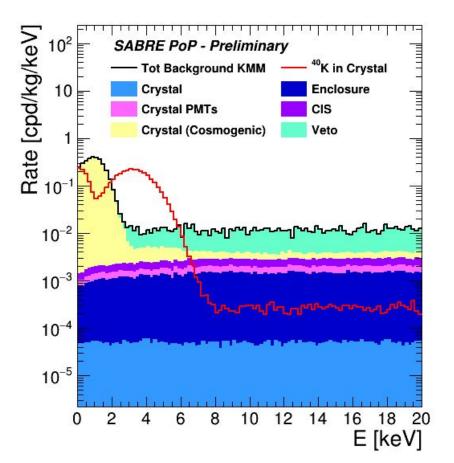
Simulated spectrum vs rock thickness and internal radius

Total internal background for DM measurement

Internal note MC

veto: E(Scintillator) > 100 keV E(Crystal) \in [2,6] keV

Rate, veto OFF	Rate, veto ON
[cpd/kg/keV]	[cpd/kg/keV]
$3.0 \cdot 10^{-2}$	$5.7 \cdot 10^{-4}$
$3.7 \cdot 10^{-3}$	$4.6\cdot10^{-4}$
$3.5\cdot10^{-1}$	$1.5\cdot 10^{-1}$
$3.0\cdot10^{-1}$	$3.9\cdot10^{-2}$
$1.3 \cdot 10^{-2}$	$8.3 \cdot 10^{-3}$
$9.5 \cdot 10^{-3}$	$3.6 \cdot 10^{-3}$
$7.1 \cdot 10^{-1}$	$2.0\cdot 10^{-1}$
	$\begin{tabular}{ cpd/kg/keV]}\hline 3.0\cdot10^{-2}\\ 3.7\cdot10^{-3}\\ 3.5\cdot10^{-1}\\ 3.0\cdot10^{-1}\\ 1.3\cdot10^{-2}\\ 9.5\cdot10^{-3}\end{tabular}$


(*) after 180 days underground

- Expected BKG 0.2 cpd/kg/keV in the ROI
- Total veto rejection of internal bkg: factor 3.5
- Crystal is the main source of background
 - contaminations in the crystal measured with ICP-MS
 - dominant bkg 40 K → measured independently with ICP-MS at Seastar and PNNL
 - other bkg do not change the overall picture 1

Total internal background for K measurement

Internal note MC

- **Target** ⁴⁰K **electron capture** (3 keV $e^{-1/x}$ -rays + 1.46 MeV γ) in the crystal and other processes with large energy deposits in the scintillator
- Coincidences Cystal+Scintillator allow to study other intrinsic BKGs that give a energy release in the scintillator

 $\begin{array}{l} \mathsf{E}(\mathsf{Scintillator}) \in [1280, 1640] \; \mathsf{keV} \\ \mathsf{E}(\mathsf{Crystal}) \in [2, 4] \; \mathsf{keV} \end{array}$

	Rate KMM
	[cpd/kg/keV]
Veto	$6.2 \cdot 10^{-3}$
CIS(*)	$7.7\cdot10^{-4}$
Crystal	$5.1 \cdot 10^{-5}$
Crystal Cosmogenic(*)	$1.8\cdot 10^{-2}$
CrystalPMTs	$4.3 \cdot 10^{-4}$
Enclosure(*)	$1.3 \cdot 10^{-3}$
Total	$2.7 \cdot 10^{-2}$
Crystal ⁴⁰ K	$1.9\cdot 10^{-1}$

(*) after 60 days underground

 Largest bkg contribution from ²²Na mostly below threshold of 2 keV