Trigger and DAQ Status

Suerfu SABRE General Meeting October 4, 2017

Outline:

- 1. Overview of SABRE trigger and DAQ
- 2. Possible upgrade to DAQ software
- 3. Upgrade to full-scale experiment

Overview of SABRE trigger and DAQ

• Trigger requirements:

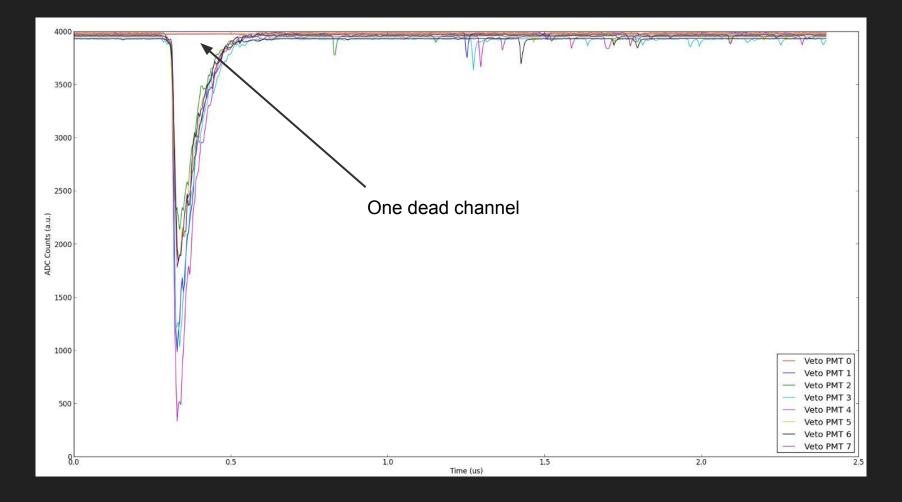
- Multiple pairs of PMTs coupled to multiple crystal modules
- 10 veto PMTs
- For dark matter searches and potassium counting, only crystal coincidence is necessary

• ADC requirements:

- Scalability multiple crystal module, more veto PMTs in the full-scale experiment
- \circ Event rate is low projected to be on ~ Hz level
- Fast veto signal, slower crystal signal
 - Decay time ~10 ns vs ~230 ns

Overview of SABRE trigger and DAQ

- Decided (by Princeton) to use CAEN VME systems:
- Trigger V1495
 - General-purpose VME board with Altera Cyclone II FPGA.
 - FPGA firmware is Implemented via VHDL.
 - 4 trigger modes : dark matter, liquid scintillation, veto, calibration
 - Trigger scheme is very simple (PoP resource usage < 0.1% on the chip)
 - V1495 has only 2 output LEMO terminal TRIG signal from V1495 has to be chained in V1720
 - Trigger information has to be passed to V1495 via LVDS (low-voltage differential signaling).
- ADC V1720:
 - 250 MS/s, 12-bit resolution enough for pseudocumene & Nal
 - Daisy-chainable scalability proved in DarkSide
 - \circ All channels and boards share the same bandwidth of ~ 85 MB/s


Overview of SABRE trigger and DAQ

• Status:

- Trigger and DAQ has been set up in SABRE PoP temporary site in Hall B in March 2017
- The system was tested with 8 PMTs concurrently operating
 - a (retired) BGO crystal was suspended in the vessel
 - BGO light yield was too poor
 - In the first overnight run, a muon accidentally hit the crystal and gave a beautiful pulse
 - However earlier in the day, a worker tripped over the cable, breaking a connector on ADC

• Further tests going on:

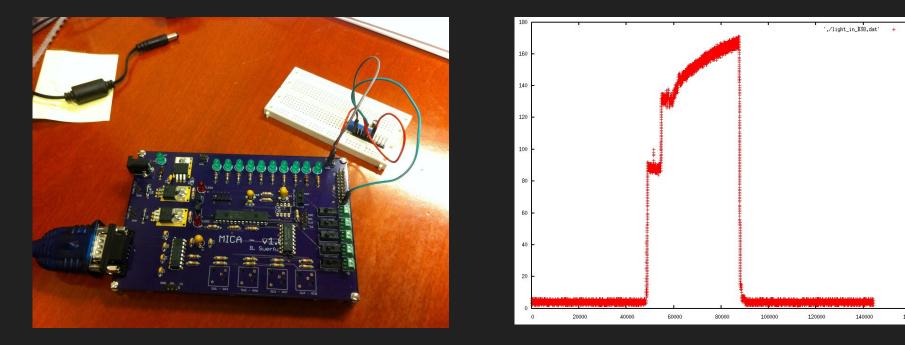
- Trigger efficiency
- PMT gain vs voltage, dark count

Possible upgrade to DAQ software

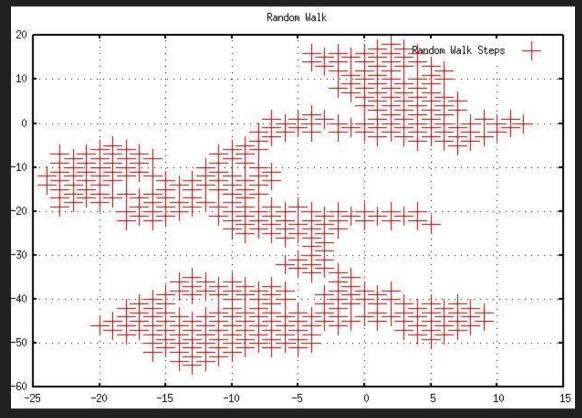
- 1. Current software saberdaq
 - a. Written in C++, object-oriented
 - b. Config file based
 - c. Recompilation needed for added features
 - d. A little difficult in extending the code to other scenarios
- 2. I am currently working on another DAQ software project polaris
 - a. Philosophy : one program for a wide range of DAQ needs.
 - b. Initially only a hobby project for DIY electronics, sensors & DAQ, networking ...
 - c. Currently used in measuring & recording pressure, temperature, etc. for crystal-related work
 - d. Written in C++ again, object-oriented, config-file based
 - e. Highly modular, functions loaded at runtime instead of compile time
 - f. Low software overhead
 - g. No additional library dependency
 - h. Flexible and easy to extend and scale up

The reality and challenge of DAQ software

- 1. Too much variety!
 - a. Nature of data, bandwidth, sampling rate, ways to visualize, ...
- 2. High-dependence on hardware
- 3. Development cost is often high
- 4. polaris helps to:
 - a. Modularize DAQ jobs independent and intermix
 - b. Reduce DAQ software development cost and time
 - c. Promote software reuse


How polaris works

1. In generalizing DAQ three things are unavoidable:


- a. How data is acquired
- b. What does the data look like
- c. How data is stored
- 2. polaris works by:
 - a. User writes libraries specifying how to get data, and how to write them onto disk, and how to visualize them
 - b. User specifies in config file where to look for above libraries
 - c. polaris will load the needed libraries at runtime and coordinates between different modules throughout the entire DAQ process.

Demo: turning on light in the room

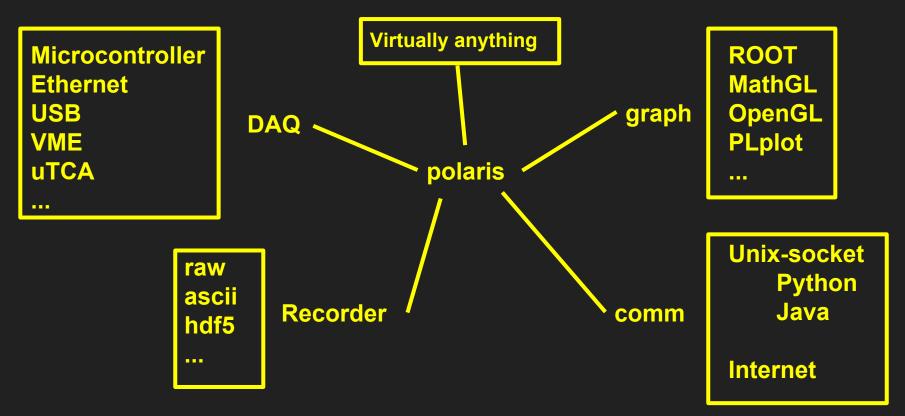
Custom circuit with ADC that reads voltage periodically on a phototransistor

Demo: reading random noise in computer

How can polaris improve SABRE DAQ

1. Generalizability:

- a. Using a different hardware, rewrite only the DAQ library and load it at runtime
- b. Need to add a new hardware, write the corresponding plugin and load it at runtime


2. Communication to other programs:

- a. Suppose there are other programs (python, java, labview) that needs communication, simply implement a socket-class and load it at runtime.
- b. Easier integration of slow-control data

3. Visualization:

- **a.** Want to use Gnuplot, ROOT, Python, plotutil, MathGL, OpenGL, ... for visualization, simply write only a new graphics object and load it at runtime.
- b. Different visualization method depending on what is being visualized

How can polaris improve SABRE DAQ

Current status of polaris

- 1. Can read and record voltage on a phototransistor
- 2. Reading from V1720
 - a. Tested in the absence of PMT signal
 - b. Readout no problem
- 3. Possible field-test in November/December 2017
- 4. Network interface class currently being implemented
 - a. Scalable via master-slave model
 - b. Inter-program communication will be achieved
- 5. uTCA support being added suggestion from CMS
 - a. uTCA state of the art hardware nowadays

Upgrade to full-scale experiment

- 1. Trigger:
 - a. The underlying digital circuit is block-based, easy to extend to multiple veto / crystal
 - i. As easy as adding another IC chip on a breadboard and making connections.
 - b. FPGA OK
 - c. Limited pin for ADC trigger input, but on the order ~ 100.
 - i. Special ribbon cable might be needed
 - d. New functionality can also be added, with slight difficulty
- 2. ADC:
 - a. Will need a preamp totally new PMT base and enclosure
 - b. ground -loop : V1720 has implicit ground on the Connector Crate Power line
 - i. Floating ground isolation transformer
 - ii. Differential input
- 3. ADC readout:
 - a. Bandwidth no problem : $f x N \sim 15000$ per optical link