South Characterisation/DAQ Update

Lindsey Bignell, Chunhua Li, Shanti Krishnan

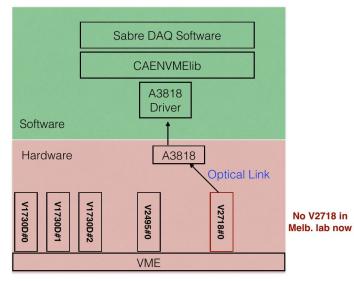
DAQ

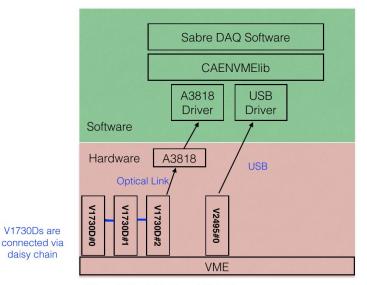
- CAEN modules at UMelb.
 - Awaiting 3rd digitizer and VME bridge (V2718).
- Higher digitizer sampling rate than PoP.
 - POP: 250 MSPS@12 bit.
 - Potentially improved PSD.
- V2495 FPGA unit implements trigger logic.

Digitizer V1730D

- #3
- 8 channels
- Analogy input bandwidth
 250 MHz
- Sampling rate 500 MS/s
- Resolution: 14 bits
- Memory: 5.12 MS/ch.
- Data transfer rate: optical link~70 MB/s, USB~30 MB/s

Programmable Logic Unit V2495

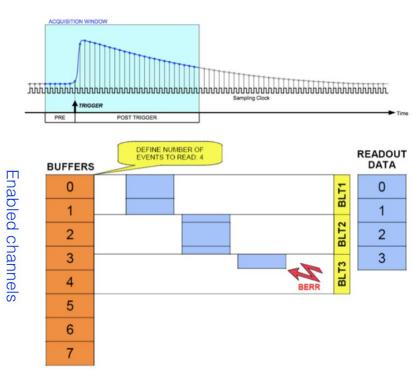

VME64 crate, 21 slot


PCI Express CONET2 Controller A3818

DAQ - Communication

- Planned implementation: readout via bridge.
- For testing purposes (while awaiting bridge): readout via optical link and USB.

 $\mathsf{PC} \rightarrow \mathsf{PCIe} \ \mathsf{A3818} \rightarrow \mathsf{V2718} \rightarrow \mathsf{VME} \rightarrow \mathsf{V1720D}/\mathsf{V2495}$



PC → PCIe A3818 → V1720D PC → USB → V2495

DAQ - Event Structure

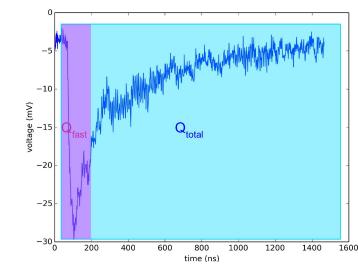
- 32 bit word header, 16 bit word data.
- Read out using 32 bit VME block transfer..

31 30 29 28 27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11	10 9 8	7 6	5	4	3	2	1 0	
1 0 1 0 EVENT SIZE										
BOARD ID BF RES 0	BF RES 0 PATTERN / TRG OPTIONS CHANNEL MASK [7:0]						7:0]			
CHANNEL MASK [15:8] EVENT COUNTER										
TRIGGER TIME TAG										
0 0 SAMPLE [1] – CH[0]			SAMPLE [0] – CH[0]							
0 0 SAMPLE [0 0 SA	AMPLE [2	2] – Cł	H[0]						
0 0 SAMPLE [N	I-1] – CH[0]	0 0 SA	MPLE [N	-2] - 0	CH [0)]				
0 0 SAMPLE [1] – CH[1]	0 0 SA	AMPLE [0	0] – Cł	H[1]					
0 0 SAMPLE [3] – CH[1]	0 0 SA	AMPLE [2	2] – Cł	H[1]					
•••										
0 0 SAMPLE [N	I-1] – CH[1]	0 0 SA	MPLE [N	-2] – 0	CH [1]				
••••										

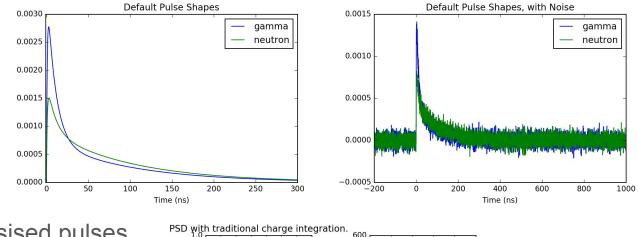
HEADE

R

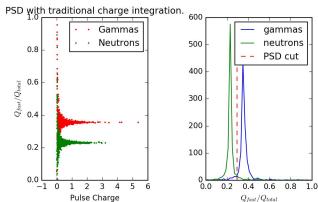
DATA CHO


DATA CH1

DAQ - Status

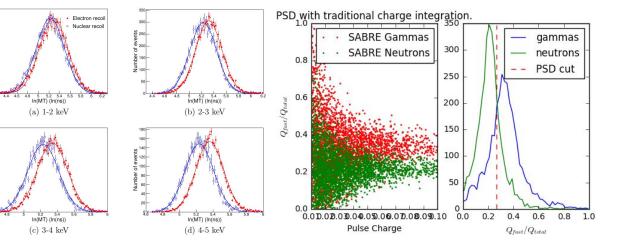

- Some of the DAQ electronics have arrived (at UMelb), and DAQ software is being developed.
 - Able to be tested soon.
- Next stage is to set up the trigger on the FPGA unit (V2495).
- Lead person: Chunhua (UMelb).
- Hardware will be duplicated at the ANU to enable testing an identical DAQ (and as a drop-in replacement).

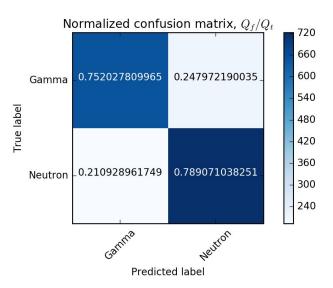
Pulse Shape Discrimination


- We care about PSD as it gives us the ability to reduce (non recoil-like) background.
- Traditional PSD:
 - Fast/Total charge (most places).
 - Mean decay time (dark matter experiments).
- The are just linear transforms of the waveform.
- Other transforms are possible (and potentially more optimal). Ones I've looked at:
 - Principal Component Analysis (PCA): maximise the variance of some signal.
 - Linear Discriminant Analysis (LDA): given a labelled dataset, project onto a space that maximises the distance between labels whilst minimising the variance within labels.

PSD: Numerical Study

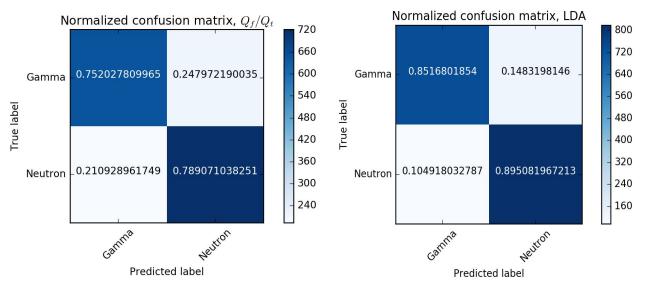
- Synthesised pulses.
- Added noise.
- Optimised traditional Qf/Qtotal PSD.
 - It works OK for large Pulses.

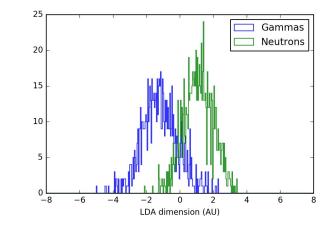

PSD Numerical Study


Reproduced something closer to the COSINE Data (arxiv 1503.05253).

Confusion matrix:

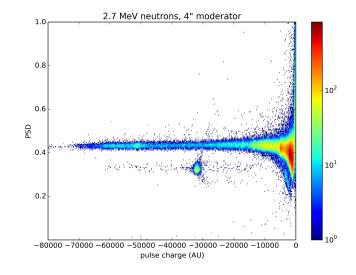
- ~25% of 'neutron' events were really gammas!
- We lose trigger efficiency for a PSD Cut (~21%).


250 Jacobia Strand



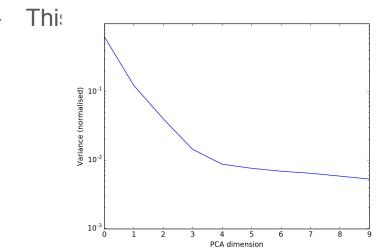
PSD Numerical Study

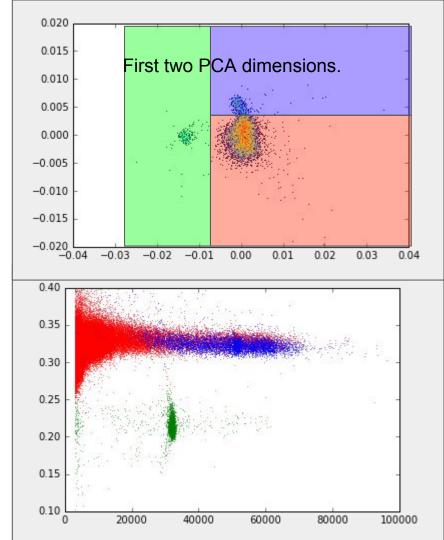
- Much better PSD.
- Need to be careful to Avoid over-fitting.
 - Can be avoided by filtering and doing PCA first.



PSD: CLYC data

- Cs₂⁶LiYCl₆:Ce (CLYC) will be used to measure the SUPL neutron flux (Bonner spheres).
- Was tested at ANU in beam test with
 ⁷Li(p,n) + HDPE moderators.
- CLYC is also sensitive to gammas
 - Good: we can measure the SABRE South gamma background.
 - Bad: the gamma flux $\sim 10^4$ neutron flux.
 - $n \sim 5x10^{-6} \text{ cm}^{-2}\text{s}^{-1}$, $g \sim 2-5x10^{-2} \text{ cm}^{-2}\text{s}^{-1}$
 - Fortunately: CLYC has good PSD, but we still need to optimise it.
- Alternate PSD; take principal component as PSD parameter.

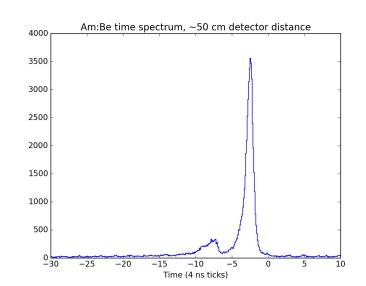



PSD: CLYC data

- PCA gave good separation of neutronlike and gamma-like events, as well as a third (probably spurious) cluster.
- FOM = <gamma> <neut $>/\sigma_{gamma}$

 $+\sigma_{neut}$

- Traditional PSD: 3.93 +/- 0.03
- PCA-PSD: 4.42 +/- 0.04
- Translates to 8x less false positive PID.



PSD: ongoing

- Generate a dataset of time-tagged neutrons \rightarrow labelled data.

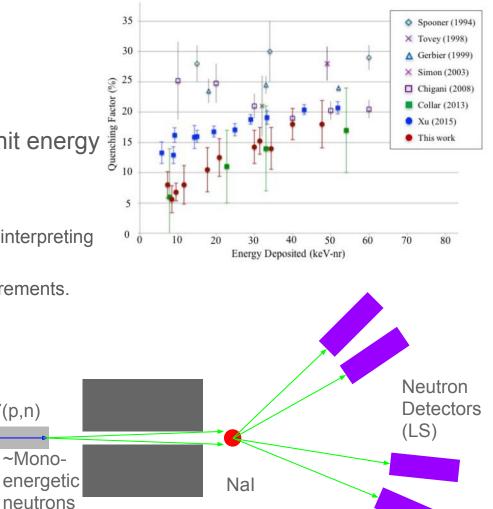
Nal

- Early Result:

Quenching Factor

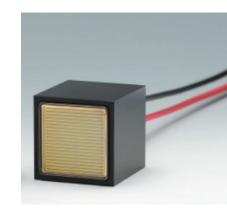
- Nuclear recoils emit less light per unit energy _ than
 - electron recoils.
 - Understanding this is very important for interpreting _ the SABRE result.

Li-7(p,n)


~Mono-

- Some tension between previous measurements. _
 - WHY? _

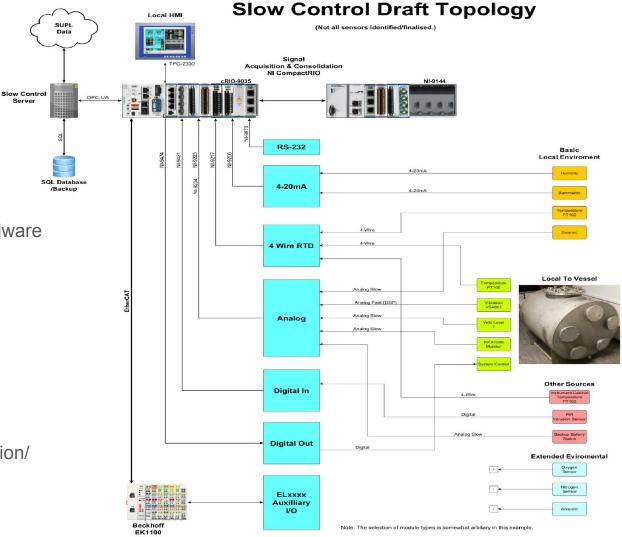
ANU


Tandem

Proposed measurement: _

Quenching Factor - Experimental design

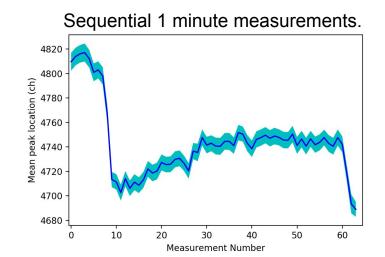
- Tubes:
 - 2x UBA (43% peak quantum efficiency) channel plate PMTs
 - Improve low energy thresholds.
 - 8x 1.5" SBA PMTs for neutron detectors.
 - Faster than most (all?) other studies.
 - Small size allows more compact setup for same solid angle.
- Enclosure:
 - Sealing: avoid wetting the crystal!
 - Goniometer for angle dependence.
 - Temperature-controlled measurements.
- Simulation:
 - Wrapping may also give an opportunity to test G4 optical models.
- Timeline:
 - Should be ready by end of year, the system can be tested with other materials while we await crystals.



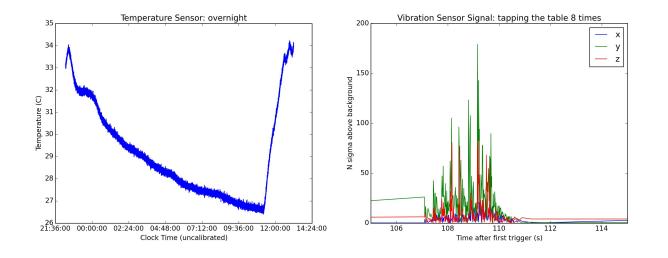
Slow Control

- Modular. _
 - Flexible, extensible. _
- Heterogenous.
 - Use cheaper Beckhoff hardware _ where possible.

Server


- Connected.
 - Embedded controller. _
 - High bandwidth ethernet _ connection to database.
- To do:
 - Sensors? Locations?
 - Integration with reconstruction/ _ DAQ software.
 - 'Wet box' tests. -

Thanks!


Neutron Backgrounds

- CLYC beam test.
 - Already discussed at collaboration meeting.
 - Simulation of this is ongoing.
- CLYC detector has a problem with instability:
 - It's not clear what the cause is (too fast to be temperature).
 - A back-of-envelope gain looks about right.
 - The PMT base appears OK.
 - We have swapped out everything else.
 - We can live with a degraded resolution? (~9% at 662 keV vs expected 4-5%).

Neutron Backgrounds

- DAQ sensor board for environmental measurements.
 - Temperature, pressure, humidity, vibration sensors.
 - Vibration sensor triggers on 'bursts'.

