Signatures of a Local Cosmic Ray Source

Michael Kachelrieß

NTNU, Trondheim

with G.Giacinti, A.Nernov, V.Savchenko, D.Semikoz

Outline of the talk

- Introduction: CR propagation
 - Diffusion approach
 - Trajectory approach
- Scape model and anisotropic diffusion
 - Connecting D(E) and GMF
 - Fluxes of groups of CR nuclei & knee
 - Consequences of anisotropic diffusion
- A recent nearby SN?
 - Anisotropy
 - Antimatter fluxes
 - Nuclei fluxes and B/C

Conclusions

Outline of the talk

- Introduction: CR propagation
 - Diffusion approach
 - Trajectory approach
- Escape model and anisotropic diffusion
 - Connecting D(E) and GMF
 - Fluxes of groups of CR nuclei & knee
 - Consequences of anisotropic diffusion
- A recent nearby SN?
 - Anisotropy
 - Antimatter fluxes
 - Nuclei fluxes and B/C

Conclusions

Outline of the talk

- Introduction: CR propagation
 - Diffusion approach
 - Trajectory approach
- Scape model and anisotropic diffusion
 - Connecting D(E) and GMF
 - Fluxes of groups of CR nuclei & knee
 - Consequences of anisotropic diffusion

A recent nearby SN?

- Anisotropy
- Antimatter fluxes
- Nuclei fluxes and B/C

Conclusions

Introduction: CR propagation

- Extragalactic HE CRs:
 - use model for Galactic Magnetic Field
 - calculate trajectories $\boldsymbol{x}(t)$ of individual CRs via $\boldsymbol{F}_L = q\boldsymbol{v} \times \boldsymbol{B}$.
- Galactic CR, low energies:
 - CRs as fluid
 - use effective diffusion picture
 - connection to GMF only indirect

Introduction: CR propagation

- Extragalactic HE CRs:
 - use model for Galactic Magnetic Field
 - calculate trajectories $\boldsymbol{x}(t)$ of individual CRs via $\boldsymbol{F}_L = q \boldsymbol{v} \times \boldsymbol{B}$.
- Galactic CR, low energies:
 - CRs as fluid
 - use effective diffusion picture
 - connection to GMF only indirect

• Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 - 150) \, pc$

- 3

- 4 同 6 4 日 6 4 日 6

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 150) \, pc$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$.

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\rm min} \sim {\rm AU}$ to $l_{\rm max} \sim (10-150)\,{\rm pc}$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$. all fluctuations between l_{max} and $\sim 1/10R_L$ have to be included
 - \Rightarrow makes trajectory approach computationally very expansive

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 - 150) \, pc$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$.
- diffusion as effective theory

Image: A math and A math and

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 - 150) \, pc$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$.
- diffusion as effective theory
- slope of power spectrum $\mathcal{P}(k) \propto k^{-\alpha}$ determines energy dependence of diffusion coefficient for $B_{\text{reg}} = 0$ as $D(E) \propto E^{\beta}$ as $\beta = 2 \alpha$:
 - $\begin{array}{lll} {\sf Kolmogorov} & \alpha=5/3 & \Leftrightarrow & \beta=1/3 \\ {\sf Kraichnan} & \alpha=3/2 & \Leftrightarrow & \beta=1/2 \end{array}$

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 150) \, pc$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$.
- diffusion as effective theory
- slope of power spectrum $\mathcal{P}(k) \propto k^{-\alpha}$ determines energy dependence of diffusion coefficient for $B_{\text{reg}} = 0$ as $D(E) \propto E^{\beta}$ as $\beta = 2 \alpha$:

Kolmogorov	$\alpha = 5/3$	\Leftrightarrow	$\beta = 1/3$
Kraichnan	$\alpha = 3/2$	\Leftrightarrow	$\beta = 1/2$

• injection spectrum $dN/dE \propto E^{-\delta}$ modified to $dN/dE \propto E^{-\delta-\beta}$

イロト イポト イヨト イヨト 二日

- Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales $l_{\min} \sim AU$ to $l_{\max} \sim (10 150) \, pc$
- CRs scatter mainly on field fluctuations B(k) with $kR_L \sim 1$.
- diffusion as effective theory
- slope of power spectrum $\mathcal{P}(k) \propto k^{-\alpha}$ determines energy dependence of diffusion coefficient for $B_{\text{reg}} = 0$ as $D(E) \propto E^{\beta}$ as $\beta = 2 \alpha$:

Kolmogorov	lpha = 5/3	\Leftrightarrow	$\beta = 1/3$
Kraichnan	$\alpha = 3/2$	\Leftrightarrow	$\beta = 1/2$

- \bullet injection spectrum $dN/dE \propto E^{-\delta}$ modified to $dN/dE \propto E^{-\delta-\beta}$
- anisotropy $\delta = -3D_{ij} \nabla_i \ln(n) \propto E^{\beta}$

5 / 24

Standard diffusion approach:

• often emphasis on interactions

Michael Kachelrieß (NTNU Trondheim)

3

→

Image: A match a ma

- often emphasis on interactions
- GMF enters only indirectly via D(E) and L
- good approximation for many "average" quantities: $I_{\gamma}(E), \ldots$

< 4 → <

Standard diffusion approach:

- often emphasis on interactions
- GMF enters only indirectly via D(E) and L
- good approximation for many "average" quantities: $I_{\gamma}(E), \ldots$
- how important are deviations, local effects?

< 17 ▶

How to connect diffusion and GMF?

- comparison of $D_{ij}(E)$:
 - analytical calculation: only approx. & limiting cases
 - numerical calculation straight-forward

3

< 回 > < 三 > < 三 >

How to connect diffusion and GMF?

- comparison of $D_{ij}(E)$:
 - ▶ analytical calculation: only approx. & limiting cases
 - numerical calculation straight-forward
- diffusion picture: D(E) strongly degenerated with $I(E) \propto E^{\alpha}$ and L

3

< 回 > < 三 > < 三 >

How to connect diffusion and GMF?

- comparison of $D_{ij}(E)$:
 - analytical calculation: only approx. & limiting cases
 - numerical calculation straight-forward
- \bullet diffusion picture: D(E) strongly degenerated with $I(E) \propto E^{\alpha}$ and L
- better observable: $\tau_{\rm esc}(E) = L^2/(2D) \propto 1/X$

- 31

- 4 週 ト - 4 三 ト - 4 三 ト

Our approach:

- use model for Galactic magnetic field: Jansson-Farrar, Psirkhov et al.,...
- calculate trajectories $\boldsymbol{x}(t)$ via $\boldsymbol{F}_L = q \boldsymbol{v} \times \boldsymbol{B}$.

3

(人間) トイヨト イヨト

Our approach:

- use model for Galactic magnetic field: Jansson-Farrar, Psirkhov et al.,...
- calculate trajectories $\boldsymbol{x}(t)$ via $\boldsymbol{F}_L = q \boldsymbol{v} \times \boldsymbol{B}$.
- as preparation, let's calculate diffusion tensor in pure, isotropic turbulent magnetic field

< /i>

3

- 4 回 ト - 4 回 ト

• asymptotic value is ~ 50 smaller than standard value

< 4 → <

• for isotropic diffusion:

$$D = \frac{cL_0}{3} \left[(R_{\rm L}/L_0)^{2-\alpha} + (R_{\rm L}/L_0)^2 \right]$$

э

< (T) > <

• for isotropic diffusion:

for
$$\alpha = 5/3$$

$$D = \frac{cL_0}{3} \left[(R_{\rm L}/L_0)^{2-\alpha} + (R_{\rm L}/L_0)^2 \right]$$

Michael Kachelrieß (NTNU Trondheim)

Parizot

• for isotropic diffusion:

for
$$\alpha = 5/3$$

$$D = \frac{cL_0}{3} \left[(R_{\rm L}/L_0)^{2-\alpha} + (R_{\rm L}/L_0)^2 \right] \propto B^{-1/3}$$

э

< (T) > <

• for isotropic diffusion:

$$D = \frac{cL_0}{3} \left[(R_{\rm L}/L_0)^{2-\alpha} + (R_{\rm L}/L_0)^2 \right]$$

• dominance of regular field, $B_{
m rms} \ll B_0 \; \Rightarrow \; D_{\parallel} \gg D_{\perp}$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- dominance of regular field, $B_{
 m rms} \ll B_0 \ \Rightarrow \ D_{\parallel} \gg D_{\perp}$
- anisotropic turbulence

- dominance of regular field, $B_{
 m rms} \ll B_0 \ \Rightarrow \ D_{\parallel} \gg D_{\perp}$
- anisotropic turbulence
- \Rightarrow anisotropic CR propagation

< 4 → <

- dominance of regular field, $B_{
 m rms} \ll B_0 \ \Rightarrow \ D_{\parallel} \gg D_{\perp}$
- anisotropic turbulence
- \Rightarrow anisotropic CR propagation
- \Rightarrow relative importance of single sources is changed

Consequences of anisotropic propagation:

 $\Rightarrow\,$ local sources contribute only, if d_{\perp} is small

Fitting the grammage X

[Giacinti, MK, Semikoz ('14,'15)]

- fix $l_{
 m coh}$ and regular field $oldsymbol{B}(oldsymbol{x})$, e.g. JF model
 - LOFAR: $l_{\rm coh} \lesssim 10\,{\rm pc}$ in disc

• determine magnitude of $\mathcal{P}(k)$ from grammage X(E)

Fitting the grammage X

[Giacinti, MK, Semikoz ('14,'15)]

- ullet fix $l_{\rm coh}$ and regular field ${m B}({m x})$, e.g. JF model
 - LOFAR: $l_{\rm coh} \lesssim 10\,{\rm pc}$ in disc
- determine magnitude of $\mathcal{P}(k)$ from grammage X(E)

Fitting the grammage X

[Giacinti, MK, Semikoz ('14,'15)]

- ullet fix $l_{\rm coh}$ and regular field ${m B}({m x})$, e.g. JF model
 - LOFAR: $l_{\rm coh} \lesssim 10\,{\rm pc}$ in disc
- determine magnitude of $\mathcal{P}(k)$ from grammage X(E)

• prefers weak random fields on $k \sim 1/R_L$

3

< 回 > < 回 > < 回 >

Fitting the grammage X

[Giacinti, MK, Semikoz ('14,'15)]

- ullet fix $l_{\rm coh}$ and regular field ${m B}({m x})$, e.g. JF model
 - LOFAR: $l_{\rm coh} \lesssim 10\,{
 m pc}$ in disc
- determine magnitude of $\mathcal{P}(k)$ from grammage X(E)

- prefers weak random fields on $k \sim 1/R_L$
- test: fluxes $I_A(E)$ of all isotopes fixed by low-energy data

3

< 回 > < 回 > < 回 >

Knee from Cosmic Ray Escape: proton energy spectra

Knee from Cosmic Ray Escape: He energy spectra

Knee from Cosmic Ray Escape: CNO energy spectra

Knee from Cosmic Ray Escape: total energy spectra

Knee from Cosmic Ray Escape: dipole anisotropy

Knee from Cosmic Ray Escape: dipole anisotropy

Local source

- ${\, \bullet \,}$ secondary \bar{p} and e^+ flux have same shape as p
 - \bar{p} diffuse as $p \Rightarrow$ leads to constant \bar{p}/p ratio
 - \bar{p}/p ratio fixed by source age $\Rightarrow \bar{p}$ flux is predicted
 - ▶ e⁺ flux is predicted
 - \blacktriangleright relative ratio of \bar{p} and e^+ depends only on their Z factors

- $\bullet\,$ secondary \bar{p} and e^+ flux have same shape as p
- fluxes consistent with 2–3 Myr old source

[MK, Neronov, Semikoz '15]

- $\bullet\,$ secondary \bar{p} and $e^+\,$ flux have same shape as p
- fluxes consistent with 2–3 Myr old source

[MK, Neronov, Semikoz '15]

- $\bullet\,$ secondary \bar{p} and $e^+\,$ flux have same shape as $p\,$
- fluxes consistent with 2–3 Myr old source
- 2-3 Myr SN explains anomalous ⁶⁰Fe sediments
- SNe connected to Local Bubble

[Ellis+ '96,...]

[Schulreich '17,...]

- $\bullet\,$ secondary \bar{p} and $e^+\,$ flux have same shape as $p\,$
- fluxes consistent with 2-3 Myr old source
- 2-3 Myr SN explains anomalous 60 Fe sediments
- SNe connected to Local Bubble
- what about other CR puzzles?
 - breaks? rigidity dependence?

[Ellis+ '96,...]

[Schulreich '17,...]

- $\bullet\,$ secondary \bar{p} and $e^+\,$ flux have same shape as $p\,$
- fluxes consistent with 2–3 Myr old source
- 2-3 Myr SN explains anomalous ⁶⁰Fe sediments
- SNe connected to Local Bubble
- what about other CR puzzles?
 - breaks? rigidity dependence?
- B/C consistent? CR anisotropy?

[Ellis+ '96,...]

[Schulreich '17,...]

Anisotropy of a single source

• if only turbulent field:

diffusion = random walk = free quantum particle

• number density is Gaussian with $\sigma^2 = 4DT$

$$\delta = \frac{3D}{c} \frac{\nabla n}{n} = \frac{3R}{2T}$$

• what happens for general fields?

Anisotropy of a single source

- if only turbulent field:
 diffusion = random walk = free quantum particle
- number density is Gaussian with $\sigma^2 = 4DT$

$$\delta = \frac{3D}{c} \frac{\nabla n}{n} = \frac{3R}{2T}$$

• what happens for general fields?

Anisotropy of a single source

- if only turbulent field:
 diffusion = random walk = free quantum particle
- number density is Gaussian with $\sigma^2 = 4DT$

$$\delta = \frac{3D}{c} \frac{\nabla n}{n} = \frac{3R}{2T}$$

• what happens for general fields?

Anisotropy of a single source: only turbulent field

Anisotropy of a single source: plus regular

Anisotropy of a single source:

• regular field changes $n(\boldsymbol{x})$, but keeps it Gaussian

$$\Rightarrow$$
 no change in δ

Anisotropy of a single source:

Anisotropy of a single source:

[Savchenko, MK, Semikoz '15]

• suggests low-energy cutoff \Rightarrow source is off-set

Local source: nuclei fluxes

• same shape of rigidity spectra $F_A(\mathcal{R})$ for all nuclei A

3

イロト イヨト イヨト

Local source: nuclei fluxes

- same shape of rigidity spectra $F_A(\mathcal{R})$ for all nuclei A
- relative normalisation of "local source" $F^{(1)}(\mathcal{R})$ and "average" $F^{(2)}(\mathcal{R})$ varies,

$$F_A(\mathcal{R}) = C_A^{(1)} F^{(1)}(\mathcal{R}) + C_A^{(2)} F^{(2)}(\mathcal{R})$$

イロト イポト イヨト イヨト

Local source: nuclei fluxes

 \Rightarrow explains breaks and variation of rigidity spectra

Michael Kachelrieß (NTNU Trondheim)

GSSI, 27. Sept. 17 1 / 4

Local source: Secondary nuclei and B/C

• "local" grammage is fixed by positrons

イロト 不得下 イヨト イヨト 二日

Local source: Secondary nuclei and B/C

- "local" grammage is fixed by positrons
- local source gives plateau in B/C

- 3

(日) (周) (三) (三)

Local source: Secondary nuclei and B/C

- "local" grammage is fixed by positrons
- local source gives plateau in B/C

- Anisotropic propagation and knee due to CR escape
 - isotropic diffusion leads to too large X
 - recovery of fluxes as suggested by KASCADE-Grande
 - probes GMF: suggests small $l_{\rm coh}$
 - transition to light-intermediate extragalactic CRs completed at $10^{18} \,\mathrm{eV}$
 - propagation feature is unavoidable, but possible to shift to higher energies
 - source effects may be on top

- Anisotropic propagation and knee due to CR escape
 - \blacktriangleright isotropic diffusion leads to too large X
 - recovery of fluxes as suggested by KASCADE-Grande
 - probes GMF: suggests small l_{coh}
 - transition to light-intermediate extragalactic CRs completed at $10^{18} \,\mathrm{eV}$
 - propagation feature is unavoidable, but possible to shift to higher energies
 - source effects may be on top

- Anisotropic propagation and knee due to CR escape
 - \blacktriangleright isotropic diffusion leads to too large X
 - recovery of fluxes as suggested by KASCADE-Grande
 - probes GMF: suggests small $l_{\rm coh}$
 - transition to light-intermediate extragalactic CRs completed at 10^{18} eV
 - propagation feature is unavoidable, but possible to shift to higher energies
 - source effects may be on top

- Anisotropic propagation and knee due to CR escape
 - \blacktriangleright isotropic diffusion leads to too large X
 - recovery of fluxes as suggested by KASCADE-Grande
 - probes GMF: suggests small $l_{\rm coh}$
 - transition to light-intermediate extragalactic CRs completed at $10^{18} \,\mathrm{eV}$
 - propagation feature is unavoidable, but possible to shift to higher energies
 - source effects may be on top

Conclusions II

Single source: anisotropy

- dipole formula $\delta = 3R/2T$ holds universally in quasi-gaussian regime
- plateau of δ points to dominance of single source
- Single source: primary and secondary fluxes
 - consistent explanation of p, \bar{p} and e^+ fluxes
 - explains breaks and variation in rigidity spectra of nuclei
 - consistent with B/C, suggests plateau
 - consistent with ⁶⁰Fe (and δ ?)

Iocal geometry of GMF is important – Local Bubble?

Conclusions II

Single source: anisotropy

- dipole formula $\delta = 3R/2T$ holds universally in quasi-gaussian regime
- plateau of δ points to dominance of single source

Single source: primary and secondary fluxes

- consistent explanation of p, \bar{p} and e^+ fluxes
- explains breaks and variation in rigidity spectra of nuclei
- consistent with B/C, suggests plateau
- consistent with ⁶⁰Fe (and δ ?)

Iocal geometry of GMF is important – Local Bubble?

Conclusions II

- Single source: anisotropy
 - dipole formula $\delta = 3R/2T$ holds universally in quasi-gaussian regime
 - plateau of δ points to dominance of single source
- Single source: primary and secondary fluxes
 - consistent explanation of p, \bar{p} and e^+ fluxes
 - explains breaks and variation in rigidity spectra of nuclei
 - consistent with B/C, suggests plateau
 - consistent with ⁶⁰Fe (and δ ?)

Iocal geometry of GMF is important – Local Bubble?

- 4 同 6 4 日 6 4 日 6