Rassegna Sperimentale sulla Fisica del Neutrino

Fabio Bellini

"Sapienza" Università di Roma " & INFN Roma

Congresso Prospettive Sezione INFN di Roma 06/05/2009

Neutrino Physics

• How small is the Neutrino mass? (Fermi, Pauli ~1930)

• Which Neutrino: Dirac or Majorana? (Majorana 1937)

- Do Neutrinos oscillate? (Pontecorvo ~1960)
- Astrophysical/Cosmological Neutrinos:
 relic neutrinos? Supernova neutrinos? high Energy neutrinos?
- Electromagnetic Neutrino Properties?
- Geo-neutrinos?
- Sterile neutrinos?

see Capone & De Bernardis' talk

Oscillations Results

What's next

- Precision era: Δm^2_{12} , θ_{12} , Δm^2_{23} , θ_{23}
- Appearance paradox: appearance of new flavors never observed unambiguously

$$\nu_{\mu} \rightarrow \nu_{\tau}$$
 (opera)
 $\nu_{\mu} \rightarrow \nu_{e}$ (the second second

- Measure θ_{13} :
 - $\nu_{\mu} \rightarrow \nu_{e}$ sub-leading transition

 $\bar{\nu}_e$ disappearance from reactors (DOUBLE CHOOZ, DAYA BAY)

- Depending on θ_{13} :
 - Mass hierarchy @ accelerators
 - **CP violation**: $P_{CP} \propto 0.23 \sin(\theta_{13}) \sin(\delta) \sin^2(\Delta m_{13}^2 L/E) \sin(\Delta m_{12}^2 L/E)$

$v_{\mu} \Rightarrow v_{\tau}$: OPERA

A. Buccheri, M.Capodiferro, P.Pecchi, A.Pelosi, G. Rosa, A. Ruggeri

• Goal: identify v_{τ} appearance through CC interaction

$$\mu \to \nu_{\tau}, \nu_{\tau} + N \to \tau^- + X$$

 $\begin{array}{ll} \mu^{-} \, \nu_{\tau} \, \nu_{\mu} & \text{B. R.} \sim 17\% \\ h^{-} \, \nu_{\tau} \, n(\pi^{\circ}) & \text{B. R.} \sim 50\% \\ e^{-} \, \nu_{\tau} \, \nu_{e} & \text{B. R.} \sim 18\% \\ \pi^{+} \, \pi^{-} \, \pi^{-} \, \nu_{\tau} \, n(\pi^{\circ}) & \text{B. R.} \sim 14\% \end{array}$

- Need: O(kTon) target mass + high granularity detector (σ~μm) for τ detection (cτ~87 μm) and bkgd rejection (mainly v_μN →cμX)
 - Lead-nuclear emulsion target segmented into basics units(bricks): 57(330µm)emulsion films between 1 mm Pb sheets

 ${\cal V}$

In Picture

CNGS Run 2008

- Total beam intensity: $1.8 \cdot 10^{19}$ pot (exp. 4.5 \cdot 10^{19} pot/y)
- **1663 v candidate** interactions in the target
- 850 bricks scanned: 650 interactions (8 charm event)

<e (v<sub="">µ)></e>	17 GeV	
L	730 km	
L/E	43 Km/GeV	
$(v_e + \bar{v_e})/v_{\mu}$	0.87%	
$\overline{\nu}_{\mu}$ / ν_{μ}	4%	
v_{τ} prompt	negligible	

Mean

14

16

18 Impact Parameter (µm)

2.517

Opera perspectives

- Expectation for 2009: 3.6 $\cdot 10^{19}$ pot \Rightarrow 3500 v events on detector
 - Looking forward to see the first τ event
- Total "Nominal" pot in 5 years: 22 ·10¹⁹ pot

τ ⁻ decay channels	ε (%)	BR (%)	Signal $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$	Background:
τ⁻ → μ ⁻	17.5	17.7	2.9	0.17
$\tau^- \rightarrow e^-$	20.8	17.8	3.5	0.17
$\tau^{-} \rightarrow h^{-}$	5.8	49.5	3.1	0.24
τ⁻ → 3h	6.3	15	0.9	0.17
ALL	ε x BR	=10.6%	10.4	0.75

• Activity in Rome: *emulsion scanning station for data analysis*

T2K $V_{\mu} \Rightarrow V_{\mu}, V_{\mu} \Rightarrow V_{e}$:

U.Dore, C. Gargiulo, P. Loverre, L.Ludovici, C.Mariani

- Precise measurement of Δm^2_{23} , θ_{23} from v_{μ} disappearance
 - → signal: $v_{\mu} n \rightarrow p \mu^{-}$ bkgd: CC-1π events
- Search for θ_{13} : $v_{\mu} \Rightarrow v_{e}$ appearance
 - signal: $v_e n \rightarrow p e^-$ bkgd: Intrinsic beam v_e , NC-1 π^0

• Off-axis beam technique: ve contamination @ peak ~0.4%

Se detector

Key for good E_v spectrum and background estimate

50GeV Synchrotro

- April 23rd 2009: *first protons on target* http://www.kek.jp/intra-e/press/2009/J-PARCT2K.html
- Start Data taking at December 2009 and accumulate ~10²⁰ POT by summer 2010

(V) V CROSS Section: SciBoone K2K-SciBar detector at FNACEBOONE Genetic Construction

- Data taking is over. Collected statistics: $1(1.5) \cdot 10^{20}$ POT di v (\overline{v})
- No evidence of CC coherent π production *Phys.Rev.D* 78:112004, 2008
- CC-QE, CC1π, NC1π, NC-elastic measurement cross section on going

θ₁₃ Experiments

 $Sin^2 2\theta_{13}$ (90%CL)

- **T2K:** sin²(20₁₃) <0.01 in 5 years(no sensitivity for CP violation and matter effects)
- Double Chooz:
 - End of 2009: start with only far detector: sin²(2θ₁₃) <0.06 90%CL in 1.5 y</p>
 - Far+Near from 2011: sin²(2θ₁₃) <0.03 90%CL in 3 y</p>
- Daya Bay:
 - Start in 2012 sin²(2θ₁₃) <0.01 90%CL</p>
- NOvA:
 - ▶ 2nd generation LBL experiment

(15kTon tracking liquid scintillator at

810 km off-axis from NUMI(700kW))

Full detector start:2013

Groundbreaking started May 1st 2009

sin²(2θ₁₃) <0.01 + matter and CP effect

θ₁₃ dilemma

- All mixing matrix and mass hierarchy could be explored with accelerator experiment
- If sin²(2θ₁₃)>0.01(θ₁₃>3°)
 - Superbeam (2-4 MW) + new detectors

Electronic final state \rightarrow *low density detector*: MTon WC, 0.1 Mton LAr, Liquid scintillator Systematic limited: flux composition and low energy nuclear cross section

- If sin²(2θ₁₃)<0.01 (θ₁₃<3°)
 - Neutrino factories: initial beam $v_{\mu} + \overline{v}_e$ or $\overline{v}_{\mu} + v_e$

Golden channel $v_e \Rightarrow v_\mu$ wrong sign muons: Minos like detector (wrong charge rejection<10⁻³)

Silver channel $v_e \Rightarrow v_\tau$: 4xOPERA or 10 kTon LAr detector

High density detector: E>10GeV, L~3000 km, consistent matter effect

• Beta beams: v_{μ} appearance but only one flavor at t=0: v_e or \overline{v}_e

Drawback low energy neutrinos sub GeV: single π NC production and e mis-id

Dirac or Majorana?

Majorana conjecture (1937) v=v^C

- Massless neutrino DOES NOT allow testing of the Majorana nature
- Implication: Lepton number violation
- Neutrinoless Double Beta Decay: $(A,Z) \rightarrow (A,Z+2) + 2 e^{-1}$

$$\Gamma_{1/2}^{0\nu} \propto Q^5 |M_{nucl}|^2 |m_{\beta\beta}|^2$$

 $m_{\beta\beta} = \cos^2 \theta_{13} (m_1 \cos^2 \theta_{12} + m_2 e^{2i\alpha} \sin^2 \theta_{12}) + m_3 e^{2i\beta} \sin^2 \theta_{13}$

The challenge

CUORICINO

F.Bellini, F.Orio. C.Tomei, M.Vignati

- Particle energy converted into phonons \rightarrow temperature variation $\Delta T = E/C$
- Need very low heat capacity: crystals (dielectric, diamagnetic) @~10mK

- Detector response in this configuration: ~ 0.2 mK / MeV~0.2 μ V/MeV
- FWHM Resolution @0vDBD ~ 0.3%

Final (preliminary) Results

Hosted @ Laboratori Nazionali del Gran Sasso, Italy.

- Final statistics: $M \cdot t = 18 \text{ kg}^{130} \text{Te} \cdot \text{y}$
- Background level: $b = (0.18 \pm 0.01) counts/keV/kg/y$

$0\nu\beta\beta$: where we are & we will be

• Express $m_{\beta\beta}$ as function of measured oscillation parameters and the unknown lightest neutrino mass: $m_{\beta\beta} = f(U_{ek}, m_{lightest}, \Delta m_{12}, \Delta m_{13})$

The way to CUORE

F.Bellini, A.Buccheri, C.Cosmelli, I.Dafinei, R.Faccini, F.Ferroni, C.Gargiulo E.Longo, S.Morganti, F.Orio, V.Pettinacci, C.Tomei, M.Vignati

into the CUORICINO cryostat and CUORE-0 will start(2010)

Rome activities:

Engineering of CUORE(0) detector construction Crystal production Construction/installation/data taking/data analysis Bolometer response function development Alternative CUORE calibration system study Dark matter studies

CUORE and competitors

- **CUORE**: 200 kg ¹³⁰Te (2012)
 - ► T>2.1·10²⁶ \Leftrightarrow 0.02<m_v<0.1 eV
- GERDA @LNGS: naked ⁷⁶Ge in high purified Ar
 - Phase I:15 kg T>2·10²⁵ in 1 y (end 2009)
 - Phase II(III): 40(1000) kg enriched

 $\tau > 2.10^{26} \Leftrightarrow 0.07 < m_v < 0.3 \text{ eV in 3 y}$

- **SUPERNEMO**(R&D):improved tracking detectors(2013)
 - ▶ 100-20 kg ⁸²Se T>1-2·10²⁶ ⇔ 0.04<m_v<0.1 eV</p>
- **EXO:** Liquid enriched ¹³⁶Xe TPC
 - ▶ phase I: 200 kg T>2·10²⁵ ⇔ 0.1<m_v<0.2 eV</p>
 - ▶ phase II: 1 Ton (Ba⁺⁺ tag) $\tau > 8 \cdot 10^{26} \Leftrightarrow 0.03 < m_v < 0.06 \text{ eV}$

Bolux: double read-out

A promising candidate: ZnSe

g. B2-5 – Scatter plots of light signal amplitudes vs. heat signal amplitudes (calibrated in energy) for

 ⁴ Preliminary: a rejection efficiency ~99%
 exp. bkgd~10^{-3/4} counts/keV/kg/y

Rome activities:

-developement and characterization of ZnSe scintillating crystals -construction and data taking/analysis of scintillating bolometers @LNGS

Conclusions

- Neutrino physics is one of the leading field in HEP today
- Oscillation:
 - 2009: the generation of experiment optimize to detect θ_{13} is starting:

Double Chooz, T2K, (soon after Daya Bay, then NOvA)

- Neutrino oscillation future dictated by θ_{13} value
- Accelerator neutrino beam might have a bright future

- **Dirac or Majorana** nature is a fundamental question that needs to be answered
 - The second generation experiment could win or might show the path to victory
 - It could represent the only chance to give a measure of the neutrino mass

Thanks to F.Ferroni, P.Loverre, L.Ludovici, S.Pirro, G.Rosa

m_v from beta decay: MARE

- Rhenium Bolometer array: ${}^{187}\text{Re} \rightarrow {}^{187}\text{Os} \text{ e}^{-} \overline{v} (Q=2.47 \text{ keV}, \tau_{1/2} \sim 43.2 \text{ Gy})$
- Phase I: $\Delta E \sim 5 eV$, $\Delta t \sim 50 \mu s \Rightarrow m_v \sim 0.2 eV$

- Phase II: magnetic micro-calorimeters R&D: $\Delta E \sim 5eV \Delta t \sim 1 \mu s \Rightarrow m_v \sim 0.2 eV$
- KATRIN: the ultimate spectrometer m_v~0.2 eV