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Fact #1 : LEP and SLD precision data strongly suggest the 
existence of a light Higgs boson,  mH ~ 100-300 GeV

Fact #2 :
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The instability against radiative correction makes a light 
(elementary) scalar in the low-energy spectrum highly 
unnatural  unless a symmetry protection is at work
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CHIRAL SYMMETRY

(fermion protection)

GAUGE SYMMETRY

(gauge protection)

SUSY h ⊂
(

h̃
h

)

GAUGE-HIGGS
UNIFICATION h = A5

[requires extra dimensions]
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Bulk

Consider a segment :

y=0 y=L

xμ
y

Any field propagating into the 5th dimension 
can be decomposed in Fourier armonics

Φ(x, y) =
∑

n

ζn(y)φ(n)(x)

and must satisfy definite boundary conditions :

∂5Φ(x, yi) = 0 Neumann (+)

Φ(x, yi) = 0 Dirichlet (−)
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• Quantizing with boundary condition solves two apparently big problems :

1. Fermions in 5D are NOT chiral

2. A5,  being a gauge field,  transforms as an adjoint 
representation → not an SU(2) doublet !
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Aâ
5(++)

DM = ∂M + iAM



Consider for example SU(3) in the bulk 
with the following boundary conditions:

━
━
━

━
━
━

SU(3)

Aa
µ(++), T a ∈ Alg{SU(2)× U(1)}

Aâ
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fermion 0-modes are chiral

The Yukawa coupling between 
doublet and singlet originates 
from the covariant derivative :

Ψ̄ iΓM (∂M − iAM ) Ψ ⊃ Ψ̄Lγ5T âΨR Aâ
5 + h.c.

A5
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Signal and Background Simulation

Signal and SM background have been simulated using:

✤ MadGraph/MadEvent [MatrixElement] + Pythia [Showering - no hadronization or und.event]

✤ Quark/Jet matching a la MLM

✤ Jets reconstructed with a cone algorithm (GetJet) with

✤ Jet energy and momentum smeared by                   to simulate the detector resolution100%/
√

E

SM bckg
[                      ]mh = 180 GeV

σ [fb] σ ×BR(l±l±) [fb]

T5/3T 5/3/BB + jets (M = 500 GeV) 2.5× 103 104
T5/3T 5/3/BB + jets (M = 1 TeV) 37 1.6

ttW+W− + jets (⊃ tt̄h + jets) 121 5.1
ttW± + jets 595 18.4
W+W−W± + jets (⊃ hW± + jets) 603 18.7
W±W± + jets 340 15.5

∆R = 0.4 , Emin
T = 30GeV
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Discovery Potential:
Ldisc

M = 500 GeV T5/3 + B 56 pb−1
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Extra Cuts
for M=1TeV:

pT (1st jet) ≥ 200 GeV
∑

i
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signal
tt̄W tt̄WW WWW WW

(M = 1 TeV)

Efficiencies (εdisc) 0.65 0.091 0.032 0.16 0.18
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Ldisc

M = 1 TeV T5/3 + B 15 fb−1

B only 48 fb−1
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1. Reconstruct 2 W’s

|M(jj)−mW | ≤ 20 GeV

∆Rjj(1st pair) ≤ 1.5
|!pT (1st pair)| ≥ 100 GeV

∆Rjj(2nd pair) ≤ 2.0
|!pT (2nd pair)| ≥ 30 GeV

2. Reconstruct 1 top (t=Wj)

W−
W−

|M(Wj)−mt| ≤ 25 GeV

signal
tt̄W tt̄WW WWW WW

(M = 500 GeV)
ε2W 0.62 0.36 0.49 0.29 0.15
εtop 0.65 0.56 0.64 0.35 0.35
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Conclusions

Gauge-Higgs unification is another example of symmetry protection, 
beyond SuperSymmetry, to keep the Higgs light

Prediction:  Heavy tops and bottoms and possibly other exotic fermions

Same-sign di-lepton channels promising for discovering B and T5/3
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