Gauge-Higgs Unification

Theory and Phenomenological Consequences at the LHC

Roberto Contino

Università di Roma La Sapienza

Fact #1 :

LEP and SLD precision data strongly suggest the existence of a light Higgs boson, mH ~ 100-300 GeV

Fact #2 :

The instability against radiative correction makes a light (elementary) scalar in the low-energy spectrum highly unnatural unless a symmetry protection is at work

$$\delta m_h^2 = \left[6 y_t^2 - \frac{3}{4} \left(3 g_2^2 + g_1^2 \right) - 6 \lambda_4 \right] \frac{\Lambda^2}{8\pi^2}$$

Two examples of symmetry protections

mass of fermions and gauge bosons are UV-stable: each protected by a symmetry

Strategy: relating the Higgs boson to fermions or gauge fields to acquire their symmetry protection

Two examples of symmetry protections

mass of fermions and gauge bosons are UV-stable: each protected by a symmetry

Strategy:

relating the Higgs boson to fermions or gauge fields to acquire their symmetry protection

Two examples of symmetry protections

mass of fermions and gauge bosons are UV-stable: each protected by a symmetry

Strategy:

relating the Higgs boson to fermions or gauge fields to acquire their symmetry protection

• Suppose a fifth extra spatial dimension exists:

 $A_M = \{A_\mu, A_5\}$

• Suppose a fifth extra spatial dimension exists:

$$A_M = \{A_\mu, A_5\}$$

scalar under the 4D Lorentz group

• Suppose a fifth extra spatial dimension exists:

$$A_M = \{A_\mu, A_5\}$$

scalar under the 4D Lorentz group

$$\mathcal{L}_{5D} = -\frac{1}{4g_5^2} F_{MN} F^{MN} = -\frac{1}{4g_5^2} \left[F_{\mu\nu} F^{\mu\nu} + 2 F_{\mu5} F^{\mu5} \right]$$

5D gauge invariance forbids a potential for A_5

• Suppose a fifth extra spatial dimension exists:

 $\mathcal{L}_{5D} = -\frac{1}{4g_5^2} F_{MN} F^{MN} = -\frac{1}{4g_5^2} \left[F_{\mu\nu} F^{\mu\nu} + 2 F_{\mu5} F^{\mu5} \right]$

$$A_M = \{A_\mu, A_5\}$$

scalar under the 4D Lorentz group

 $\frac{1}{I} \gtrsim \text{TeV}$

5D gauge invariance forbids a potential for A_5

• The extra dimension must be hidden: for example, it can be compact

• Suppose a fifth extra spatial dimension exists:

 $\mathcal{L}_{5D} = -\frac{1}{4g_5^2} F_{MN} F^{MN} = -\frac{1}{4g_5^2} \left[F_{\mu\nu} F^{\mu\nu} + 2 F_{\mu5} F^{\mu5} \right]$

$$A_M = \{A_\mu, A_5\}$$

scalar under the 4D Lorentz group

5D gauge invariance forbids a potential for A_5

• The extra dimension must be hidden: for example, it can be compact

$$\frac{1}{L} \gtrsim \text{TeV}$$

Consider a segment :

Any field propagating into the 5th dimension can be decomposed in Fourier armonics

$$\Phi(x,y) = \sum_{n} \zeta_n(y)\phi^{(n)}(x)$$

and must satisfy definite boundary conditions :

 $\partial_5 \Phi(x, y_i) = 0$ Neumann (+) $\Phi(x, y_i) = 0$ Dirichlet (-) Each Fourier mode behaves like a 4D field with mass $m_n = \frac{n \pi}{L}$ (n = 0, 1, 2, ...)

Each Fourier mode behaves like a 4D field $n\pi$

with mass
$$m_n = \frac{n \pi}{L}$$
 $(n = 0, 1, 2, ...)$

quantization of the momentum in the extra dimension leads to a 4D mass gap Each Fourier mode behaves like a 4D field

with mass $m_n = \frac{n \pi}{L}$ (n = 0, 1, 2, ...)

$$\zeta_n^{(++)} = N_n \, \cos\left(\frac{n\pi y}{L}\right)$$

$$\zeta_n^{(--)} = N_n \, \sin\left(\frac{n\pi y}{L}\right)$$

quantization of the momentum in the extra dimension leads to a 4D mass gap

only (++) fields have "zero-modes"

Each Fourier mode behaves like a 4D field $n\pi$

with mass $m_n = \frac{n \pi}{L}$ (n = 0, 1, 2, ...)

$$\zeta_n^{(++)} = N_n \, \cos\left(\frac{n\pi y}{L}\right)$$

$$\zeta_n^{(--)} = N_n \, \sin\left(\frac{\pi \pi g}{L}\right)$$

quantization of the momentum in the extra dimension leads to a 4D mass gap

only (++) fields have "zero-modes"

• Quantizing with boundary condition solves two apparently big problems :

Each Fourier mode behaves like a 4D field $n\pi$

with mass $m_n = \frac{n \pi}{L}$ (n = 0, 1, 2, ...)

$$\zeta_n^{(++)} = N_n \, \cos\left(\frac{n\pi y}{L}\right)$$

$$\zeta_n^{(--)} = N_n \, \sin\!\left(\frac{n\pi y}{L}\right)$$

quantization of the momentum in the extra dimension leads to a 4D mass gap

only (++) fields have "zero-modes"

- Quantizing with boundary condition solves two apparently big problems :
 - I. Fermions in 5D are NOT chiral

Each Fourier mode behaves like a 4D field $\pi \pi$

with mass $m_n = \frac{n \pi}{L}$ (n = 0, 1, 2, ...)

$$\zeta_n^{(++)} = N_n \, \cos\!\left(\frac{n\pi y}{L}\right)$$

$$\zeta_n^{(--)} = N_n \, \sin\!\left(\frac{n\pi y}{L}\right)$$

quantization of the momentum in the extra dimension leads to a 4D mass gap

only (++) fields have "zero-modes"

- Quantizing with boundary condition solves two apparently big problems :
 - I. Fermions in 5D are NOT chiral
 - 2. A₅, being a gauge field, transforms as an adjoint representation \rightarrow not an SU(2) doublet !

Consider for example SU(3) in the bulk with the following boundary conditions:

SU(3)

$$\begin{split} A^{a}_{\mu}(++), \quad T^{a} \in \mathsf{Alg}\{SU(2) \times U(1)\} \\ A^{\hat{a}}_{\mu}(--), \quad T^{\hat{a}} \in \mathsf{Alg}\left\{\frac{SU(3)}{[SU(2) \times U(1)]}\right\} \end{split}$$

for consistency A₅ has opposite boundary conditions:

$$D_M = \partial_M + iA_M$$

Consider for example SU(3) in the bulk with the following boundary conditions:

SU(3)

the gauge symmetry is reduced on the boundaries \longrightarrow SU(2)×U(1) SU(2)×U(1)

$$\begin{split} A^{a}_{\mu}(++), \quad T^{a} \in \mathsf{Alg}\{SU(2) \times U(1)\} \\ A^{\hat{a}}_{\mu}(--), \quad T^{\hat{a}} \in \mathsf{Alg}\left\{\frac{SU(3)}{[SU(2) \times U(1)]}\right\} \end{split}$$

for consistency A₅ has opposite boundary conditions:

$$D_M = \partial_M + iA_M$$

Consider for example SU(3) in the bulk
with the following boundary conditions:

O-mode of A_µ in the
adjoint of SU(2)

$$A^a_\mu(++), T^a \in Alg\{SU(2) \times U(1)\}$$

 $A^a_\mu(++), T^a \in Alg\{SU(2) \times U(1)\}$
 $A^a_\mu(--), T^a \in Alg\{\frac{SU(3)}{[SU(2) \times U(1)]}\}$
 $\Psi = \begin{bmatrix} \psi_L^{(2)}(++) & \psi_R^{(2)}(--) \\ & \psi_L^{(1)}(--) & \psi_R^{(1)}(++) \end{bmatrix}$
SU(2)×U(1)
SU(2)×U(1)
SU(2)×U(1)
SU(2)×U(1)
 $for consistency A_s hasopposite boundary conditions: $A^a_5(--)$
 $D_M = \partial_M + iA_M$
 $A^a_5(++)$
 Φ
 O -mode of A_s
doublet of SU(2)$

Consider for example SU(3) in the bulk
with the following boundary conditions:
SU(3)

O-mode of A_µ in the
adjoint of SU(2)

$$A^a_\mu(++), T^a \in Alg\{SU(2) \times U(1)\}$$

 $A^a_\mu(++), T^a \in Alg\{SU(2) \times U(1)\}$
 $A^a_\mu(--), T^{\hat{a}} \in Alg\{\frac{SU(3)}{[SU(2) \times U(1)]}\}$
 $\Psi = \begin{bmatrix} \psi_L^{(2)}(++) & \psi_R^{(2)}(--) \\ \psi_L^{(1)}(--) & \psi_R^{(1)}(++) \end{bmatrix}$
 $\Psi = \begin{bmatrix} \psi_L^{(2)}(++) & \psi_R^{(2)}(--) \\ \psi_L^{(1)}(--) & \psi_R^{(1)}(++) \end{bmatrix}$
 $\Psi = \begin{bmatrix} \psi_L^{(2)}(++) & \psi_R^{(2)}(--) \\ \psi_L^{(1)}(--) & \psi_R^{(1)}(++) \end{bmatrix}$
 $\Psi = \begin{bmatrix} \psi_L^{(2)}(++) & \psi_R^{(2)}(--) \\ \psi_L^{(1)}(--) & \psi_R^{(1)}(++) \end{bmatrix}$
 $\Psi = \begin{bmatrix} \psi_L^{(2)}(++) & \psi_R^{(2)}(--) \\ \psi_L^{(1)}(--) & \psi_R^{(1)}(++) \end{bmatrix}$
 $\Psi = \begin{bmatrix} \psi_L^{(2)}(++) & \psi_R^{(2)}(--) \\ \psi_L^{(1)}(--) & \psi_R^{(1)}(++) \end{bmatrix}$
 $\Psi = \begin{bmatrix} \psi_L^{(2)}(++) & \psi_R^{(2)}(--) \\ \psi_L^{(1)}(--) & \psi_R^{(1)}(++) \end{bmatrix}$
 $\Psi = \begin{bmatrix} \psi_L^{(2)}(++) & \psi_R^{(2)}(--) \\ \psi_L^{(1)}(--) & \psi_R^{(1)}(++) \end{bmatrix}$
 $\Psi = \begin{bmatrix} \psi_L^{(2)}(++) & \psi_R^{(2)}(--) \\ \psi_L^{(1)}(--) & \psi_R^{(1)}(++) \end{bmatrix}$
 $\Psi = \begin{bmatrix} \psi_L^{(2)}(++) & \psi_R^{(2)}(--) \\ \psi_R^{(1)}(++) & \psi_R^{(2)}(--) \\ \psi_R^{(1)}(--) & \psi_R^{(1)}(++) \end{bmatrix}$
 $\Psi = \begin{bmatrix} \psi_L^{(2)}(++) & \psi_R^{(2)}(--) \\ \psi_R^{(1)}(+-) & \psi_R^{(2)}(--) \\ \psi_R^{(2)}(--) & \psi_R^{($

***<u>*</u>

• The 5D gauge symmetry forbids a potential for A₅ but it is globally broken by the boundary conditions

SU(3)

 $SU(2) \times U(1)$ $SU(2) \times U(1)$

• The 5D gauge symmetry forbids a potential for A₅ but it is globally broken by the boundary conditions

Arbitrarily short wave-lengths in the 5D bulk will not be affected by the presence of the boundaries

The potential at at 1-loop is UV-convergent

• The 5D gauge symmetry forbids a potential for A₅ but it is globally broken by the boundary conditions

Arbitrarily short wave-lengths in the 5D bulk will not be affected by the presence of the boundaries

The potential at at 1-loop is UV-convergent

 $SU(2) \times U(1)$ $SU(2) \times U(1)$

• Being a finite-volume effect (like the Casimir energy) the potential can only depend on A₅ through the gauge-invariant Wilson line :

$$V = V(\Phi), \qquad \Phi(x) = \exp\left\{i\int_0^L dx^5 A_5(x,y)\right\}$$

• The 5D gauge symmetry forbids a potential for A₅ but it is globally broken by the boundary conditions

Arbitrarily short wave-lengths in the 5D bulk will not be affected by the presence of the boundaries

The potential at at 1-loop is UV-convergent

 $SU(2) \times U(1)$ SU(2)

 $SU(2) \times U(1)$

• Being a finite-volume effect (like the Casimir energy) the potential can only depend on A₅ through the gauge-invariant Wilson line :

$$V = V(\Phi), \qquad \Phi(x) = \exp\left\{i\int_0^L dx^5 A_5(x,y)\right\}$$

That is:

$$V(\theta) = \frac{1}{L^4} f(\theta)$$

$$\theta = (g_5\sqrt{L}) A_5^{(0)}$$

• The 5D gauge symmetry forbids a potential for A₅ but it is globally broken by the boundary conditions

Arbitrarily short wave-lengths in the 5D bulk will not be affected by the presence of the boundaries

The potential at at 1-loop is UV-convergent

 $SU(2) \times U(1)$ SU

 $SU(2) \times U(1)$

• Being a finite-volume effect (like the Casimir energy) the potential can only depend on A₅ through the gauge-invariant Wilson line :

$$V = V(\Phi), \qquad \Phi(x) = \exp\left\{i\int_0^L dx^5 A_5(x,y)\right\}$$

That is:

$$V(\theta) = \frac{1}{L^4} f(\theta)$$
 periodic function

$$\theta = (g_5\sqrt{L}) A_5^{(0)}$$

Heavy Top partners come in complete multiplets of the bulk gauge symmetry

For a symmetry larger than SU(3) there can be fermions with exotic quantum numbers

$$\Psi(=5 \text{ of } \mathrm{SO}(5)) = \begin{bmatrix} \mathbf{2}_{7/6} = \begin{pmatrix} T_{5/3} \\ T \end{pmatrix} \\ \mathbf{2}_{1/6} = \begin{pmatrix} t \\ b \end{pmatrix} \\ \mathbf{1}_{2/3} = t \end{bmatrix}$$

Heavy Top partners come in complete multiplets of the bulk gauge symmetry

For a symmetry larger than SU(3) there can be fermions with exotic quantum numbers

 $\Psi(=5 \text{ of } SO(5)) = \begin{bmatrix} 2_{7/6} = \begin{pmatrix} T_{5/3} \\ T \end{pmatrix} \\ 2_{1/6} = \begin{pmatrix} t \\ b \end{pmatrix} \\ 1_{2/3} = t \end{bmatrix}$

For example: $SO(5) \rightarrow SO(4)$

Discovering the top partners at the LHC

Single production

Discovering the top partners at the LHC

Single production

Decay modes

 $Z_L, h / W_L^+$ $S_L^+ t_R / b_R$ $W_L^- / Z_L, h$ $b_R \ B \ S \ t_R$ t_R / b_R T

Discovering the top partners at the LHC

LHC 14 TeV 10⁴ $pp \to B \, \bar{t} \, j + X$ 10³ $\lambda_B = 4, 3, 2$ σ [fb] 10² 10 $pp \to B\bar{B} + X$ 1 0.1 400 600 1600 800 1000 1200 1400 1800 2000 M_B [GeV]

Single production

Decay modes

FCNC : absent for a 4th generation ! Z_L, h $W_L^ W_L^+$ Z_L, \prime hur t_R / b_R B t_R / b_R T

Example: Look for $B\overline{B}$ and $T_{5/3}\overline{T}_{5/3}$ in same-sign di-lepton final states

[R.C. and G.Servant JHEP 0806:026 (2008)]

Example: Look for $B\overline{B}$ and $T_{5/3}\overline{T}_{5/3}$ in same-sign di-lepton final states

[R.C. and G.Servant JHEP 0806:026 (2008)]

✓ $t\bar{t} + jets$ is not a background [except for charge mis-ID]

Example: Look for $B\overline{B}$ and $T_{5/3}\overline{T}_{5/3}$ in same-sign di-lepton final states

[R.C. and G.Servant JHEP 0806:026 (2008)]

 \checkmark $t\bar{t} + jets$ is not a background [except for charge mis-ID]

✓ For the $T_{5/3}$ case one can reconstruct the resonant (tW) invariant mass

Signal and Background Simulation

Signal and SM background have been simulated using:

- MadGraph/MadEvent [MatrixElement] + Pythia [Showering no hadronization or und.event]
- Quark/Jet matching a la MLM

 η

- Jets reconstructed with a cone algorithm (GetJet) with $\Delta R = 0.4$, $E_T^{min} = 30 \,\text{GeV}$
- * Jet energy and momentum smeared by $100\%/\sqrt{E}$ to simulate the detector resolution

		$\sigma ~[{ m fb}]$	$\sigma \times BR(l^{\pm}l^{\pm})$ [fb]
	$T_{5/3}\overline{T}_{5/3}/B\overline{B} + jets \ (M = 500 \text{ GeV})$	$2.5 imes 10^3$	104
	$T_{5/3}\overline{T}_{5/3}/B\overline{B} + jets (M = 1 \text{ TeV})$	37	1.6
	$4\overline{4}W + W = 1$ is the $(\neg 4\overline{4}b + is the)$	101	F 1
	$\begin{bmatrix} ttW & VW & + jets & (\ j tth + jets) \\ \hline \hline \hline \\ \hline \\$	121	0.1
SM bckg	$ttW^{\pm} + jets$	595	18.4
$n_h = 180 \text{ GeV}$	$W^+W^-W^{\pm} + jets \ (\supset hW^{\pm} + jets)$	603	18.7
L	$W^{\pm}W^{\pm} + jets$	340	15.5

$$l^{\pm}l^{\pm} + n \; jets + \not\!\!E_T \; (n \ge 5)$$

Strategy and cuts

Cuts:

$$l^{\pm}l^{\pm} + n \; jets + \not\!\!E_T \; (n \ge 5)$$

	$\underline{jets}:$	$\begin{cases} p_T(1st) \ge 100 \text{ GeV} \\ p_T(2nd) \ge 80 \text{ GeV} \\ n_{jet} \ge 5, \eta_j \le 5 \end{cases}$	$\underline{leptons}:$	$\begin{cases} p_T(1\text{st}) \ge 50 \text{ GeV} \\ p_T(2\text{nd}) \ge 25 \text{ GeV} \\ \eta_l \le 2.4 , \Delta R_{lj} \ge 0.4 \end{cases}$	$\not\!\!\!E_T \ge 20 \; {\rm GeV}$
--	---------------------	---	------------------------	---	-------------------------------------

	signal (M = 500 GeV)	$\begin{array}{c} \text{signal} \\ (M = 1 \text{ TeV}) \end{array}$	$t\bar{t}W$	$t\bar{t}WW$	WWW	$W^{\pm}W^{\pm}$
Efficiencies (ϵ_{main})	0.42	0.43	0.074	0.12	0.008	0.01
$\sigma [\mathrm{fb}] \times BR \times \epsilon_{main}$	44.2	0.67	1.4	0.62	0.15	0.16

Strategy and cuts

$$l^{\pm}l^{\pm} + n \; jets + \not\!\!E_T \; (n \ge 5)$$

(111	te.
	<i>/</i> u	13.

$\underline{jets}:$	$\begin{cases} p_T(1st) \ge 100 \text{ GeV} \\ p_T(2nd) \ge 80 \text{ GeV} \\ n_{jet} \ge 5, \eta_j \le 5 \end{cases}$	$\underline{leptons}: \langle$	$\begin{cases} p_T(1\text{st}) \ge 50 \text{ GeV} \\ p_T(2\text{nd}) \ge 25 \text{ GeV} \\ \eta_l \le 2.4 , \Delta R_{lj} \ge 0.4 \end{cases}$	$\not\!\!\!E_T \ge 20 \; {\rm GeV}$
1211111111			时代为1993年1993年1993年1995年1995年1995年199	

	signal	signal	+ŦW	+ŦWW	WWW	$W^{\pm}W^{\pm}$
	(M = 500 GeV)	(M = 1 TeV)	0077		** ** **	** **
Efficiencies (ϵ_{main})	0.42	0.43	0.074	0.12	0.008	0.01
$\sigma [\mathrm{fb}] \times BR \times \epsilon_{main}$	44.2	0.67	1.4	0.62	0.15	0.16

Extra Cuts	$p_T(1st jet) \ge 200 \text{ GeV}$		signal (M = 1 TeV)	$t\bar{t}W$	$t\bar{t}WW$	WWW	WW
for M=1TeV:	$\sum \vec{p}_T(l_i) \ge 300 \text{ GeV}$	Efficiencies (ϵ_{disc})	0.65	0.091	0.032	0.16	0.18
	i	$\sigma [\mathrm{fb}] \times BR \times \epsilon_{main} \times \epsilon_{disc}$	0.43	0.12	0.02	0.02	0.03

Strategy and cuts

$$l^{\pm}l^{\pm} + n \; jets + \not\!\!E_T \; (n \ge 5)$$

ſ			-0	
L	ノ	1	13	•

$\frac{j}{n_{jet}} = 0 \text{and} \frac{1}{ \eta_j } \leq 5 \qquad \frac{1}{ \eta_j } \leq 2.4, \Delta R_{lj} \geq 0.4$	<u>jets</u> : 〈	$\begin{cases} p_T(1st) \ge 100 \text{ GeV} \\ p_T(2nd) \ge 80 \text{ GeV} \\ n_{jet} \ge 5, \eta_j \le 5 \end{cases}$	$\underline{leptons}: \langle$	$\begin{cases} p_T(1\text{st}) \ge 50 \text{ GeV} \\ p_T(2\text{nd}) \ge 25 \text{ GeV} \\ \eta_l \le 2.4 , \Delta R_{lj} \ge 0.4 \end{cases}$	$\not\!\!\!E_T \ge 20 \; {\rm GeV}$
--	------------------------	---	--------------------------------	---	-------------------------------------

	signal	signal	$t\bar{t}W$	$t\bar{t}WW$	WWW	$W^{\pm}W^{\pm}$
	(M = 500 GeV)	(M = 1 TeV)				
Efficiencies (ϵ_{main})	0.42	0.43	0.074	0.12	0.008	0.01
$\sigma [\mathrm{fb}] \times BR \times \epsilon_{main}$	44.2	0.67	1.4	0.62	0.15	0.16

Extra Cuts	$p_T(1st jet) \ge 200 \text{ GeV}$		signal (M = 1 TeV)	$t\bar{t}W$	$t\bar{t}WW$	WWW	WW
for M=1TeV:	$\sum \vec{p}_T(l_i) \ge 300 \text{ GeV}$	Efficiencies (ϵ_{disc})	0.65	0.091	0.032	0.16	0.18
	\overline{i}	$\sigma [\mathrm{fb}] \times BR \times \epsilon_{main} \times \epsilon_{disc}$	0.43	0.12	0.02	0.02	0.03

			L _{disc}			L _{disc}
Discovery Potential:	M = 500 GeV	$T_{5/3} + B$	$56\mathrm{pb}^{-1}$	M - 1 TeV	$T_{5/3} + B$	$15\mathrm{fb}^{-1}$
		B only	$147\mathrm{pb}^{-1}$	M = 1 lev	B only	$48\mathrm{fb}^{-1}$

1. Reconstruct 2 W's

 $|M(jj) - m_W| \le 20 \text{ GeV}$

 $\Delta R_{jj}(\text{1st pair}) \leq 1.5$ $|\vec{p}_T(\text{1st pair})| \geq 100 \text{ GeV}$ $\Delta R_{jj}(\text{2nd pair}) \leq 2.0$ $|\vec{p}_T(\text{2nd pair})| \geq 30 \text{ GeV}$

1. Reconstruct 2 W's

 $|M(jj) - m_W| \le 20 \text{ GeV}$

 $\Delta R_{jj}(1 \text{st pair}) \leq 1.5$ $|\vec{p}_T(1 \text{st pair})| \geq 100 \text{ GeV}$ $\Delta R_{jj}(2 \text{nd pair}) \leq 2.0$ $|\vec{p}_T(2 \text{nd pair})| \geq 30 \text{ GeV}$

2. Reconstruct 1 top (t=Wj)

 $|M(Wj) - m_t| \le 25 \text{ GeV}$

1. Reconstruct 2 W's

 $|M(jj) - m_W| \le 20 \text{ GeV}$

 $\Delta R_{jj}(1 \text{st pair}) \leq 1.5$ $|\vec{p}_T(1 \text{st pair})| \geq 100 \text{ GeV}$ $\Delta R_{jj}(2 \text{nd pair}) \leq 2.0$ $|\vec{p}_T(2 \text{nd pair})| \geq 30 \text{ GeV}$

2. Reconstruct 1 top (t=Wj)

 $|M(Wj) - m_t| \le 25 \text{ GeV}$

	$\begin{array}{c c} \text{signal} \\ (M = 500 \text{ GeV}) \end{array}$	$t\bar{t}W$	$t\overline{t}WW$	WWW	WW
ϵ_{2W}	0.62	0.36	0.49	0.29	0.15
ϵ_{top}	0.65	0.56	0.64	0.35	0.35

Gauge-Higgs unification is another example of symmetry protection, beyond SuperSymmetry, to keep the Higgs light

Gauge-Higgs unification is another example of symmetry protection, beyond SuperSymmetry, to keep the Higgs light

Prediction: Heavy tops and bottoms and possibly other exotic fermions

Gauge-Higgs unification is another example of symmetry protection, beyond SuperSymmetry, to keep the Higgs light

Prediction: Heavy tops and bottoms and possibly other exotic fermions

Same-sign di-lepton channels promising for discovering B and T_{5/3}

Extra Slides

