Gauge-Higgs Unification

Theory and Phenomenological Consequences at the LHC

Roberto Contino
Università di Roma La Sapienza

Fact \#1 :

Fact \#2 :

LEP and SLD precision data strongly suggest the existence of a light Higgs boson, $\mathrm{mH} \sim 100-300 \mathrm{GeV}$

The instability against radiative correction makes a light (elementary) scalar in the low-energy spectrum highly unnatural unless a symmetry protection is at work

$$
\delta m_{h}^{2}=\left[6 y_{t}^{2}-\frac{3}{4}\left(3 g_{2}^{2}+g_{1}^{2}\right)-6 \lambda_{4}\right] \frac{\Lambda^{2}}{8 \pi^{2}}
$$

Two examples of symmetry protections

-

mass of fermions and gauge bosons are UV-stable: each protected by a symmetry

Strategy: relating the Higgs boson to fermions or gauge fields to acquire their symmetry protection

Two examples of symmetry protections

-

mass of fermions and gauge bosons are UV-stable: each protected by a symmetry

Strategy: relating the Higgs boson to fermions or gauge fields to acquire their symmetry protection

CHIRAL SYMMETRY

$$
\longrightarrow \quad \text { SUSY } \quad h \subset\binom{\tilde{h}}{h}
$$

(fermion protection)

Two examples of symmetry protections

mass of fermions and gauge bosons are UV-stable: each protected by a symmetry

Strategy: relating the Higgs boson to fermions or gauge fields to acquire their symmetry protection

Quick introduction to Gauge-Higgs unification

- Suppose a fifth extra spatial dimension exists:

$$
A_{M}=\left\{A_{\mu}, A_{5}\right\}
$$

Quick introduction to Gauge-Higgs unification

- Suppose a fifth extra spatial dimension exists:

$$
A_{M}=\left\{A_{\mu}, A_{5}\right\}<\quad \begin{aligned}
& \text { scalar under the 4D } \\
& \text { Lorentz group }
\end{aligned}
$$

Quick introduction to Gauge-Higgs unification

- Suppose a fifth extra spatial dimension exists:

$$
A_{M}=\left\{A_{\mu}, A_{5}\right\}<\quad \begin{aligned}
& \text { scalar under the 4D } \\
& \text { Lorentz group }
\end{aligned}
$$

$$
\mathcal{L}_{5 D}=-\frac{1}{4 g_{5}^{2}} F_{M N} F^{M N}=-\frac{1}{4 g_{5}^{2}}\left[F_{\mu \nu} F^{\mu \nu}+2 F_{\mu 5} F^{\mu 5}\right]
$$

5D gauge invariance forbids a potential for A_{5}

Quick introduction to Gauge-Higgs unification

- Suppose a fifth extra spatial dimension exists:

$$
A_{M}=\left\{A_{\mu}, A_{5}\right\}<\quad \begin{aligned}
& \text { scalar under the 4D } \\
& \text { Lorentz group }
\end{aligned}
$$

$$
\mathcal{L}_{5 D}=-\frac{1}{4 g_{5}^{2}} F_{M N} F^{M N}=-\frac{1}{4 g_{5}^{2}}\left[F_{\mu \nu} F^{\mu \nu}+2 F_{\mu 5} F^{\mu 5}\right]
$$

5D gauge invariance forbids a potential for A_{5}

- The extra dimension must be hidden: for example, it can be compact

$$
\frac{1}{L} \gtrsim \mathrm{TeV}
$$

Quick introduction to Gauge-Higgs unification

- Suppose a fifth extra spatial dimension exists:

$$
A_{M}=\left\{A_{\mu}, A_{5}\right\}<\quad \begin{aligned}
& \text { scalar under the } 4 \\
& \text { Lorentz group }
\end{aligned}
$$

$$
\mathcal{L}_{5 D}=-\frac{1}{4 g_{5}^{2}} F_{M N} F^{M N}=-\frac{1}{4 g_{5}^{2}}\left[F_{\mu \nu} F^{\mu \nu}+2 F_{\mu 5} F^{\mu 5}\right]
$$

5D gauge invariance forbids a potential for A_{5}

- The extra dimension must be hidden: for example, it can be compact

$$
\frac{1}{L} \gtrsim \mathrm{TeV}
$$

Consider a segment :

Any field propagating into the 5th dimension can be decomposed in Fourier armonics

$$
\Phi(x, y)=\sum_{n} \zeta_{n}(y) \phi^{(n)}(x)
$$

and must satisfy definite boundary conditions :

$$
\begin{array}{ll}
\partial_{5} \Phi\left(x, y_{i}\right)=0 & \text { Neumann } \\
\Phi\left(x, y_{i}\right)=0 & \text { Dirichlet } \tag{-}
\end{array}
$$

Each Fourier mode behaves like a 4D field
with mass $m_{n}=\frac{n \pi}{L} \quad(n=0,1,2, \ldots)$

Each Fourier mode behaves like a 4D field with mass $m_{n}=\frac{n \pi}{L} \quad(n=0,1,2, \ldots)$

Each Fourier mode behaves like a 4D field with mass $m_{n}=\frac{n \pi}{L} \quad(n=0,1,2, \ldots)$

$$
\begin{aligned}
& \zeta_{n}^{(++)}=N_{n} \cos \left(\frac{n \pi y}{L}\right) \\
& \zeta_{n}^{(--)}=N_{n} \sin \left(\frac{n \pi y}{L}\right)
\end{aligned}
$$

Each Fourier mode behaves like a 4D field with mass $m_{n}=\frac{n \pi}{L} \quad(n=0,1,2, \ldots)$

$$
\begin{aligned}
& \zeta_{n}^{(++)}=N_{n} \cos \left(\frac{n \pi y}{L}\right) \\
& \zeta_{n}^{(--)}=N_{n} \sin \left(\frac{n \pi y}{L}\right)
\end{aligned}
$$

- Quantizing with boundary condition solves two apparently big problems :

Each Fourier mode behaves like a 4D field with mass $m_{n}=\frac{n \pi}{L} \quad(n=0,1,2, \ldots)$

$$
\begin{aligned}
& \zeta_{n}^{(++)}=N_{n} \cos \left(\frac{n \pi y}{L}\right) \\
& \zeta_{n}^{(--)}=N_{n} \sin \left(\frac{n \pi y}{L}\right)
\end{aligned}
$$

- Quantizing with boundary condition solves two apparently big problems :

1. Fermions in 5D are NOT chiral

Each Fourier mode behaves like a 4D field with mass $m_{n}=\frac{n \pi}{L} \quad(n=0,1,2, \ldots)$

$$
\begin{aligned}
& \zeta_{n}^{(++)}=N_{n} \cos \left(\frac{n \pi y}{L}\right) \\
& \zeta_{n}^{(--)}=N_{n} \sin \left(\frac{n \pi y}{L}\right)
\end{aligned}
$$

- Quantizing with boundary condition solves two apparently big problems :

1. Fermions in 5D are NOT chiral
2. A_{5}, being a gauge field, transforms as an adjoint representation \longrightarrow not an $\mathrm{SU}(2)$ doublet !

Consider for example $\mathrm{SU}(3)$ in the bulk with the following boundary conditions:

$$
\begin{array}{llc}
A_{\mu}^{a}(++), & T^{a} \in \operatorname{Alg}\{S U(2) \times U(1)\} & \begin{array}{c}
\text { for consistency } A_{5} \text { has } \\
\text { opposite boundary conditions: }
\end{array} \\
A_{\mu}^{\hat{a}}(--), & T^{\hat{a}} \in \operatorname{Alg}\left\{\frac{S U(3)}{[S U(2) \times U(1)]}\right\} & A_{5}^{a}(--)
\end{array}
$$

Consider for example $\mathrm{SU}(3)$ in the bulk with the following boundary conditions:

$$
\begin{array}{llc}
A_{\mu}^{a}(++), & T^{a} \in \operatorname{Alg}\{S U(2) \times U(1)\} & \begin{array}{c}
\text { for consistency A } \text { A has } \\
\text { opposite boundary conditions: }
\end{array} \\
A_{\mu}^{\hat{a}}(--), & T^{\hat{a}} \in \operatorname{Alg}\left\{\frac{S U(3)}{[S U(2) \times U(1)]}\right\} & D_{M}^{a}(--) \\
\end{array}
$$

Consider for example SU (3) in the bulk with the following boundary conditions:

0 -mode of A_{μ} in the adjoint of $S U(2)$

$$
A_{\mu}^{a}(++), \quad T^{a} \in \operatorname{Alg}\{S U(2) \times U(1)\}
$$

$$
A_{\mu}^{\hat{a}}(--), \quad T^{\hat{a}} \in \operatorname{Alg}\left\{\frac{S U(3)}{[S U(2) \times U(1)]}\right\}
$$

for consistency A_{5} has opposite boundary conditions: $\quad A_{5}^{a}(--)$

$$
D_{M}=\partial_{M}+i A_{M}
$$

$$
A_{5}^{\hat{a}}(++)
$$

Consider for example SU (3) in the bulk with the following boundary conditions:

0 -mode of A_{μ} in the adjoint of $S U(2)$

$$
A_{\mu}^{a}(++), \quad T^{a} \in \operatorname{Alg}\{S U(2) \times U(1)\}
$$

for consistency A_{5} has opposite boundary conditions: $\quad A_{5}^{a}(--)$

$$
D_{M}=\partial_{M}+i A_{M}
$$

$$
A_{\mu}^{\hat{a}}(--), \quad T^{\hat{a}} \in \operatorname{Alg}\left\{\frac{S U(3)}{[S U(2) \times U(1)]}\right\}
$$

$$
A_{5}^{a}(--)
$$

$$
A_{5}^{\hat{a}}(++)
$$

Consider for example $\mathrm{SU}(3)$ in the bulk with the following boundary conditions:

0 -mode of A_{μ} in the adjoint of $S U(2)$

$$
\begin{array}{cc}
\downarrow & \begin{array}{cc}
A_{\mu}^{a}(++), & T^{a} \in \operatorname{Alg}\{S U(2) \times U(1)\}
\end{array} \\
\begin{array}{ll}
A_{\mu}^{\hat{a}}(--), \quad T^{\hat{a}} \in \operatorname{Alg}\left\{\frac{S U(3)}{[S U(2) \times U(1)]}\right\} & \begin{array}{c}
\text { for consistency } A_{5} \text { has } \\
\text { opposite boundary conditions: }
\end{array}
\end{array} & A_{5}^{a}(--)
\end{array}
$$

SU(3)
the gauge symmetry is
reduced on the boundaries $\longrightarrow \mathrm{SU}(2) \times \mathrm{U}(1)$
$\left.\right|^{x U(1)} \operatorname{SU(3)} \mid$

Consider for example $\mathrm{SU}(3)$ in the bulk with the following boundary conditions:

0 -mode of A_{μ} in the adjoint of $S U(2)$

$$
A_{\mu}^{a}(++), \quad T^{a} \in \operatorname{Alg}\{S U(2) \times U(1)\}
$$

$$
A_{\mu}^{\hat{a}}(--), \quad T^{\hat{a}} \in \operatorname{Alg}\left\{\frac{S U(3)}{[S U(2) \times U(1)]}\right\}
$$

$$
\Psi=\left[\begin{array}{ll}
\psi_{L}^{(2)}(++) & \psi_{R}^{(2)}(--) \\
\psi_{L}^{(1)}(--) & \psi_{R}^{(1)}(++)
\end{array}\right]
$$

for consistency A_{5} has opposite boundary conditions: $\quad A_{5}^{a}(--)$

$$
D_{M}=\partial_{M}+i A_{M}
$$

SU(3)

$$
A_{5}^{a}(--)
$$

$$
A_{5}^{\hat{a}}(++)
$$

Consider for example SU (3) in the bulk with the following boundary conditions:

0 -mode of A_{μ} in the adjoint of $S U(2)$
the gauge symmetry is reduced on the boundaries $\longrightarrow \mathrm{SU}(2) \times \mathrm{U}(1)$
for consistency A_{5} has opposite boundary conditions: $\quad A_{5}^{a}(--)$

$$
\begin{array}{ll}
\downarrow \\
A_{\mu}^{a}(++), & T^{a} \in \operatorname{Alg}\{S U(2) \times U(1)\} \\
A_{\mu}^{\hat{a}}(--), & T^{\hat{a}} \in \operatorname{Alg}\left\{\frac{S U(3)}{[S U(2) \times U(1)]}\right\}
\end{array}
$$

$$
\longrightarrow
$$

$$
D_{M}=\partial_{M}+i A_{M}
$$

$$
A_{5}^{\hat{a}}(++)
$$

SU(3)

The Yukawa coupling between doublet and singlet originates

$$
\Psi=\left[\begin{array}{cc}
\psi_{L}^{(2)}(++) & \psi_{R}^{(2)}(--) \\
& A_{5}^{(1)}(--) \\
\psi_{L}^{(1)}(++)
\end{array}\right]
$$ from the covariant derivative :

$$
\bar{\Psi} i \Gamma^{M}\left(\partial_{M}-i A_{M}\right) \Psi \supset \bar{\Psi}_{L} \gamma^{5} T^{\hat{a}} \Psi_{R} A_{5}^{\hat{a}}+h . c .
$$

The Higgs potential at i-loop

- The 5 D gauge symmetry forbids a potential for A_{5} but it is globally broken by the boundary conditions

The Higgs potential at I -loop

- The 5 D gauge symmetry forbids a potential for A_{5} but it is globally broken by the boundary conditions

Arbitrarily short wave-lengths in the 5D bulk will not be affected by the presence of the boundaries
SU(3)

The Higgs potential at r-loop

- The 5 D gauge symmetry forbids a potential for A_{5} but it is globally broken by the boundary conditions

Arbitrarily short wave-lengths in the 5D bulk will not be affected by the presence of the boundaries
[1-8 The potential at at 1 -loop is UV-convergent
SU(3)

- Being a finite-volume effect (like the Casimir energy) the potential can only depend on A_{5} through the gauge-invariant Wilson line :

$$
V=V(\Phi), \quad \Phi(x)=\exp \left\{i \int_{0}^{L} d x^{5} A_{5}(x, y)\right\}
$$

The Higgs potential at r-loop

- The 5 D gauge symmetry forbids a potential for A_{5} but it is globally broken by the boundary conditions

Arbitrarily short wave-lengths in the 5D bulk will not be affected by the presence of the boundaries

4 Z) The potential at at 1 -loop is UV-convergent
SU(3)

- Being a finite-volume effect (like the Casimir energy) the potential can only depend on A_{5} through the gauge-invariant Wilson line :

$$
V=V(\Phi), \quad \Phi(x)=\exp \left\{i \int_{0}^{L} d x^{5} A_{5}(x, y)\right\}
$$

That is:

$$
V(\theta)=\frac{1}{L^{4}} f(\theta)
$$

$$
\theta=\left(g_{5} \sqrt{L}\right) A_{5}^{(0)}
$$

The Higgs potential at I -loop

- The 5 D gauge symmetry forbids a potential for A_{5} but it is globally broken by the boundary conditions

Arbitrarily short wave-lengths in the 5D bulk will not be affected by the presence of the boundaries

4 Z) The potential at at 1 -loop is UV-convergent
SU(2)×U(1)

- Being a finite-volume effect (like the Casimir energy) the potential can only depend on A_{5} through the gauge-invariant Wilson line :

$$
V=V(\Phi), \quad \Phi(x)=\exp \left\{i \int_{0}^{L} d x^{5} A_{5}(x, y)\right\}
$$

That is:

$$
V(\theta)=\frac{1}{L^{4}} f(\theta) \quad \text { periodic function } \quad \theta=\left(g_{5} \sqrt{L}\right) A_{5}^{(0)}
$$

- From a 4D point of view the quadratic divergence in the top loop is canceled by the tower of Kaluza-Klein modes

- From a 4D point of view the quadratic divergence in the top loop is canceled by the tower of Kaluza-Klein modes

- From a 4 D point of view the quadratic divergence in the top loop is canceled by the tower of Kaluza-Klein modes

For example: $\mathrm{SO}(5) \rightarrow \mathrm{SO}(4)$

$$
\Psi(=5 \text { of } S O(5))=\left[\begin{array}{l}
\mathbf{2}_{\mathbf{7} / \mathbf{6}}=\binom{T_{5 / 3}}{T} \\
\mathbf{2}_{\mathbf{1 / 6}}=\binom{t}{b} \\
\mathbf{1}_{\mathbf{2} / \mathbf{3}}=t
\end{array}\right]
$$

- From a 4 D point of view the quadratic divergence in the top loop is canceled by the tower of Kaluza-Klein modes

Heavy Top partners come in complete multiplets of the bulk gauge symmetry

For a symmetry larger than $\mathrm{SU}(3)$ there can be fermions with exotic quantum numbers

For example: $\mathrm{SO}(5) \rightarrow \mathrm{SO}(4)$

$$
\Psi(=5 \text { of } \mathrm{SO}(5))=\left[\begin{array}{l}
\mathbf{2}_{\mathbf{7 / 6}}=\left(\begin{array}{l}
T_{5 / 3}^{T} \\
\text { electric charge }+5 / 3 \\
\mathbf{2}_{\mathbf{1} / \mathbf{6}}=\binom{t}{b} \\
\mathbf{1}_{\mathbf{2 / 3}}=t
\end{array}\right]
\end{array}\right.
$$

Discovering the top partners at the LHC

Pair production

Single production

Discovering the top partners at the LHC

Pair production

Single production

Decay modes

Discovering the top partners at the LHC

Pair production

Single production

Decay modes
FCNC : absent for a 4th generation !

Example: Look for $B \bar{B}$ and $T_{5 / 3} \bar{T}_{5 / 3}$ in same-sign di-lepton final states

Example: Look for $B \bar{B}$ and $T_{5 / 3} \bar{T}_{5 / 3}$ in same-sign di-lepton final states

$\checkmark t \bar{t}+j e t s$ is not a background [except for charge mis-ID]

Example: Look for $B \bar{B}$ and $T_{5 / 3} \bar{T}_{5 / 3}$ in same-sign di-lepton final states

$\checkmark t \bar{t}+j e t s$ is not a background [except for charge mis-ID]
\checkmark For the $T_{5 / 3}$ case one can reconstruct the resonant $(t W)$ invariant mass

Signal and Background Simulation

Signal and SM background have been simulated using:
\% MadGraph/MadEvent [MatrixElement] + Pythia [Showering - no hadronization or und.event]
\therefore Quark/Jet matching a la MLM
\% Jets reconstructed with a cone algorithm (GetJet) with $\Delta R=0.4, E_{T}^{\text {min }}=30 \mathrm{GeV}$
\because Jet energy and momentum smeared by $100 \% / \sqrt{E}$ to simulate the detector resolution

SM bckg$\left[m_{h}=180 \mathrm{GeV}\right]$		σ [fb]	$\sigma \times B R\left(l^{ \pm} l^{ \pm}\right)[\mathrm{fb}]$
	$T_{5 / 3} \bar{T}_{5 / 3} / B \bar{B}+j e t s,(M=500 \mathrm{GeV})$	2.5×10^{3}	104
	$T_{5 / 3} \bar{T}_{5 / 3} / B \bar{B}+$ jets $\quad(M=1 \mathrm{TeV})$	37	1.6
	$t \bar{t} W^{+} W^{-}+$jets ($\mathrm{t}^{\text {t }} \mathrm{h}+\mathrm{jets}$)	121	5.1
	$t \bar{t} W^{ \pm}+j e t s$	595	18.4
	$W^{+} W^{-} W^{ \pm}+j e t s\left(\supset h W^{ \pm}+j e t s\right)$	603	18.7
	$W^{ \pm} W^{ \pm}+j e t s$	340	15.5

\star We demand at least 5 hard jets ($p_{T} \geq 30 \mathrm{GeV}$):

$$
l^{ \pm} l^{ \pm}+n \text { jets }+E_{T} \quad(n \geq 5)
$$

Strategy and cuts

\star We demand at least 5 hard jets ($p_{T} \geq 30 \mathrm{GeV}$):

$$
l^{ \pm} l^{ \pm}+n \text { jets }+E_{T} \quad(n \geq 5)
$$

$$
\text { jets: }\left\{\begin{array} { l }
{ p _ { T } (1 \mathrm { st }) \geq 1 0 0 \mathrm { GeV } } \\
{ p _ { T } (2 \mathrm { nd }) \geq 8 0 \mathrm { GeV } } \\
{ n _ { \text { jet } } \geq 5 , \quad | \eta _ { j } | \leq 5 }
\end{array} \quad \text { leptons : } \left\{\begin{array}{l}
p_{T}(1 \mathrm{st}) \geq 50 \mathrm{GeV} \\
p_{T}(2 \mathrm{nd}) \geq 25 \mathrm{GeV} \\
\left|\eta_{l}\right| \leq 2.4, \quad \Delta R_{l j} \geq 0.4
\end{array} \quad E_{T} \geq 20 \mathrm{GeV}\right.\right.
$$

	signal $(M=500 \mathrm{GeV})$	signal $(M=1 \mathrm{TeV})$	$t \bar{t} W$	$t \bar{t} W W$	$W W W$	$W^{ \pm} W^{ \pm}$
Efficiencies $\left(\epsilon_{\text {main }}\right)$	0.42	0.43	0.074	0.12	0.008	0.01
$\sigma[\mathrm{fb}] \times B R \times \epsilon_{\text {main }}$	44.2	0.67	1.4	0.62	0.15	0.16

Strategy and cuts

\star We demand at least 5 hard jets $\left(p_{T} \geq 30 \mathrm{GeV}\right)$:

$$
l^{ \pm} l^{ \pm}+n \text { jets }+E_{T}(n \geq 5)
$$

$$
\text { jets : }\left\{\begin{array}{l}
p_{T}(1 \mathrm{st}) \geq 100 \mathrm{GeV} \\
p_{T}(2 \mathrm{nd}) \geq 80 \mathrm{GeV} \\
n_{\text {jet }} \geq 5, \quad\left|\eta_{j}\right| \leq 5
\end{array} \quad \text { leptons }: \quad\left\{\begin{array}{l}
p_{T}(1 \mathrm{st}) \geq 50 \mathrm{GeV} \\
p_{T}(2 \mathrm{nd}) \geq 25 \mathrm{GeV} \quad \\
\left|\eta_{l}\right| \leq 2.4, \quad \Delta R_{l j} \geq 0.4
\end{array} \quad E_{T} \geq 20 \mathrm{GeV}\right.\right.
$$

	signal $(M=500 \mathrm{GeV})$	signal $(M=1 \mathrm{TeV})$	$t \bar{t} W$	$t \bar{t} W W$	$W W W$	$W^{ \pm} W^{ \pm}$
Efficiencies $\left(\epsilon_{\text {main }}\right)$	0.42	0.43	0.074	0.12	0.008	0.01
$\sigma[\mathrm{fb}] \times B R \times \epsilon_{\text {main }}$	44.2	0.67	1.4	0.62	0.15	0.16

$$
\begin{aligned}
& p_{T}(\text { 1st jet }) \geq 200 \mathrm{GeV} \\
& \sum_{i}\left|\vec{p}_{T}\left(l_{i}\right)\right| \geq 300 \mathrm{GeV}
\end{aligned}
$$

	signal $(M=1 \mathrm{TeV})$	$t \bar{t} W$	$t \bar{t} W W$	$W W W$	$W W$
Efficiencies $\left(\epsilon_{\text {disc }}\right)$	0.65	0.091	0.032	0.16	0.18
$\sigma[\mathrm{fb}] \times B R \times \epsilon_{\text {main }} \times \epsilon_{\text {disc }}$	0.43	0.12	0.02	0.02	0.03

Strategy and cuts

\star We demand at least 5 hard jets ($p_{T} \geq 30 \mathrm{GeV}$):

$$
l^{ \pm} l^{ \pm}+n \text { jets }+E_{T}(n \geq 5)
$$

$$
\underline{\text { jets }:}\left\{\begin{array} { l }
{ p _ { T } (1 \mathrm { st }) \geq 1 0 0 \mathrm { GeV } } \\
{ p _ { T } (2 \mathrm { nd }) \geq 8 0 \mathrm { GeV } } \\
{ n _ { \text { jet } } \geq 5 , \quad | \eta _ { j } | \leq 5 }
\end{array} \quad \text { leptons : } \left\{\begin{array}{l}
p_{T}(1 \mathrm{st}) \geq 50 \mathrm{GeV} \\
p_{T}(2 \mathrm{nd}) \geq 25 \mathrm{GeV} \\
\left|\eta_{l}\right| \leq 2.4, \quad \Delta R_{l j} \geq 0.4
\end{array} \quad E_{T} \geq 20 \mathrm{GeV}\right.\right.
$$

	signal $(M=500 \mathrm{GeV})$	signal $(M=1 \mathrm{TeV})$	$t \bar{t} W$	$t \bar{t} W W$	$W W W$	$W^{ \pm} W^{ \pm}$
Efficiencies $\left(\epsilon_{\text {main }}\right)$	0.42	0.43	0.074	0.12	0.008	0.01
$\sigma[\mathrm{fb}] \times B R \times \epsilon_{\text {main }}$	44.2	0.67	1.4	0.62	0.15	0.16

Extra Cuts for $\mathrm{M}=1 \mathrm{TeV}$:

$$
\begin{aligned}
& p_{T}(1 \text { st jet }) \geq 200 \mathrm{GeV} \\
& \sum_{i}\left|\vec{p}_{T}\left(l_{i}\right)\right| \geq 300 \mathrm{GeV}
\end{aligned}
$$

	signal $(M=1 \mathrm{TeV})$	$t \bar{t} W$	$t \bar{t} W W$	$W W W$	$W W$
Efficiencies $\left(\epsilon_{\text {disc }}\right)$	0.65	0.091	0.032	0.16	0.18
$\sigma[\mathrm{fb}] \times B R \times \epsilon_{\text {main }} \times \epsilon_{\text {disc }}$	0.43	0.12	0.02	0.02	0.03

Discovery Potential:

		$L_{\text {disc }}$
$M=500 \mathrm{GeV}$	$T_{5 / 3}+B$ B only	$56 \mathrm{pb}^{-1}$
$147 \mathrm{pb}^{-1}$		

		$L_{\text {disc }}$
$M=1 \mathrm{TeV}$	$T_{5 / 3}+B$	$15 \mathrm{fb}^{-1}$
	B only	$48 \mathrm{fb}^{-1}$

Mass Reconstruction $M=500 \mathrm{GeV}$

Mass Reconstruction $M=500 \mathrm{GeV}$

1. Reconstruct $2 \mathrm{~W}^{\prime} \mathrm{s}$

$$
\begin{aligned}
& \left|M(j j)-m_{W}\right| \leq 20 \mathrm{GeV} \\
& \Delta R_{j j}(1 \text { st pair }) \leq 1.5 \\
& \mid \vec{p}_{T}(1 \text { st pair }) \mid \geq 100 \mathrm{GeV} \\
& \Delta R_{j j}(2 \text { nd pair }) \leq 2.0 \\
& \mid \vec{p}_{T}(2 \text { nd pair }) \mid \geq 30 \mathrm{GeV}
\end{aligned}
$$

Mass Reconstruction $M=500 \mathrm{GeV}$

1. Reconstruct 2 W's $^{\prime}$

$$
\begin{aligned}
& \left|M(j j)-m_{W}\right| \leq 20 \mathrm{GeV} \\
& \Delta R_{j j}(1 \text { st pair }) \leq 1.5 \\
& \mid \vec{p}_{T}(1 \text { st pair }) \mid \geq 100 \mathrm{GeV} \\
& \Delta R_{j j}(2 \text { nd pair }) \leq 2.0 \\
& \mid \vec{p}_{T}(2 \text { nd pair }) \mid \geq 30 \mathrm{GeV}
\end{aligned}
$$

2. Reconstruct 1 top $(t=W j)$

$$
\left|M(W j)-m_{t}\right| \leq 25 \mathrm{GeV}
$$

Mass Reconstruction $M=500 \mathrm{GeV}$

1. Reconstruct $2 \mathrm{~W}^{\prime} \mathrm{s}$

$$
\begin{aligned}
& \left|M(j j)-m_{W}\right| \leq 20 \mathrm{GeV} \\
& \Delta R_{j j}(1 \text { st pair }) \leq 1.5 \\
& \mid \vec{p}_{T}(1 \text { st pair }) \mid \geq 100 \mathrm{GeV} \\
& \Delta R_{j j}(2 \text { nd pair }) \leq 2.0 \\
& \mid \vec{p}_{T}(2 \text { nd pair }) \mid \geq 30 \mathrm{GeV}
\end{aligned}
$$

2. Reconstruct 1 top $(t=W j)$

$$
\left|M(W j)-m_{t}\right| \leq 25 \mathrm{GeV}
$$

	signal $(M=500 \mathrm{GeV})$	$t \bar{t} W$	$t \bar{t} W W$	$W W W$	$W W$
$\epsilon_{2 W}$	0.62	0.36	0.49	0.29	0.15
$\epsilon_{\text {top }}$	0.65	0.56	0.64	0.35	0.35

CONCLUSIONS

CONCLUSIONS

* Gauge-Higgs unification is another example of symmetry protection, beyond SuperSymmetry, to keep the Higgs light

CONCLUSIONS

\% Gauge-Higgs unification is another example of symmetry protection, beyond SuperSymmetry, to keep the Higgs light
\% Prediction: Heavy tops and bottoms and possibly other exotic fermions

CONCLUSIONS

\% Gauge-Higgs unification is another example of symmetry protection, beyond SuperSymmetry, to keep the Higgs light

Prediction: Heavy tops and bottoms and possibly other exotic fermions

* Same-sign di-lepton channels promising for discovering B and $T_{5 / 3}$

Extra Slides

