Flavour Opportunities at the Intensity Frontier

> Luca Silvestrini INFN, Sez. di Roma

- Introduction
- Present status of flavour physics
- Future perspectives and goals
- Conclusions

INTRODUCTION

The Standard Model works beautifully up to a few hundred GeV's, but it must be an effective theory valid up to a scale $\Lambda \leq M_{planck}$:

INTRODUCTION - II

- Two accidental symmetries of the SM are crucial for our discussion:
 - 1) Absence of tree-level flavour changing neutral currents, GIM suppression of FCNC @ the loop level
 - 2) No CP violation @ tree level
- \Rightarrow Flavour physics extremely sensitive to NP!!

EXPRESS REVIEW OF THE SM

• All flavour violation from charged current coupling: CKM matrix V

• Top quark exchange dominates FCNC loops: third row (V_{tq}) determines FCNC's $\leftrightarrow \bar{\rho}, \bar{\eta}$

Luca Silvestrini

INFN, Sez. di Roma, Congressino 2009

Present status: UTA & NP in $\Delta F=2$

Consider ratios of (SM+NP)/SM Δ F=2 amplitudes

$$\begin{split} C_{B_{q}} e^{2i\phi_{B_{q}}} &= \frac{\langle B_{q} | H_{\text{eff}}^{\text{full}} | \bar{B}_{q} \rangle}{\langle B_{q} | H_{\text{eff}}^{\text{SM}} | \bar{B}_{q} \rangle} = \frac{A_{q}^{\text{SM}} e^{2i\phi_{q}^{\text{SM}}} + A_{q}^{\text{NP}} e^{2i(\phi_{q}^{\text{SM}} + \phi_{q}^{\text{NP}})}}{A_{q}^{\text{SM}} e^{2i\phi_{q}^{\text{SM}}}} \\ C_{\epsilon_{K}} &= \frac{\text{Im}[\langle K^{0} | H_{\text{eff}}^{\text{full}} | \bar{K}^{0} \rangle]}{\text{Im}[\langle K^{0} | H_{\text{eff}}^{\text{SM}} | \bar{K}^{0} \rangle]}, \qquad C_{\Delta m_{K}} = \frac{\text{Re}[\langle K^{0} | H_{\text{eff}}^{\text{full}} | \bar{K}^{0} \rangle]}{\text{Re}[\langle K^{0} | H_{\text{eff}}^{\text{SM}} | \bar{K}^{0} \rangle]} \\ \text{Determine } \rho, \eta, C' \text{s and } \phi' \text{s using generalized UT} \\ \text{analysis} \end{split}$$

Derive bounds on NP scale and/or couplings

SUMMARY OF CONSTRAINTS

Parameter	Output	Parameter	Output
$C_{\Delta m_K}$	0.96 ± 0.34	C_{ε_K}	0.99 ± 0.16
C_{B_d}	0.96 ± 0.23	ϕ_{B_d}	$(-2.9\pm1.9)^\circ$
C_{B_s}	0.94 ± 0.19	ϕ_{B_s}	$(-19\pm8)^\circ\cup(-69\pm7)^\circ$
$\bar{\eta}$	0.360 ± 0.031	$\bar{ ho}$	0.177 ± 0.044
$\bar{\eta}_{SM}$	0.342 ± 0.014	$\bar{\rho}_{SM}$	0.155 ± 0.022

No deviation seen in K and B_d mixing, ample room for NP in phase of B_s mixing (might become solid evidence)

Ratio of NP/SM contributions is < 40% @ 95% prob. in B_d mixing, and ~60% in B_s mixing (but compatible with zero at 2σ).

THE SCALE OF NP

• The constraints we obtained can be used to put lower bounds on the scale of NP models with a given flavour structure:

$$A_{\rm NP}/A_{\rm SM} \sim C/C_{\rm SM}$$
 $C_i(\Lambda) = K_i F_i \frac{L}{\Lambda^2}$

• K_i numeric coefficient of O(1), F_i flavour structure, L loop coefficient, Λ NP scale

BOUNDS ON THE NP SCALE

Scenario	strong/tree	α_s loop	α_W loop
MFV (small $\tan \beta$)	5.5	0.5	0.2
MFV (large $\tan \beta$)	5.1	0.5	0.2
M_H in MFV at large $\tan\beta$	$5\sqrt{(a_0+a_1)(a_0+a_2)}\left(\frac{\tan\beta}{50}\right)$		
\mathbf{NMFV}	62	6.2	2
General	24000	2400	800

To be relevant for the hierarchy problem, NP must have a highly nontrivial flavour structure!!

Two broad flavour scenarios

- Minimal Flavour Violation (i.e. no new source of flavour violation beyond Yukawa couplings) effectively holds at least at the level seen in K and B_d mixing, i.e. < 40%.
- 2) New sources of Flavour & CPV are at work in transitions between 2nd and 3rd families, but strongly suppressed elsewhere. Nonabelian flavour symmetries? Guts + v?
- Tevatron and LHCb will tell us soon!

What we are aiming at

- Being able to determine the flavour structure of whatever NP seen at the LHC
- Being able to derive info on the full spectrum of NP if LHC only sees part of it
- Being able to cover indirectly the region of NP masses just above the LHC reach, pushing the indirect bound on Λ as high as possible

How do we get there - I

- A few % error on CKM parameters in the generalized UTA;
- Determining NP contributions to Δ F=2 and Δ F=1 transitions in all sectors (K, B_d, B_s, D) at the few percent level;
- Improving Lepton Flavour Violation and Lepton Universality bounds by more than one order of magnitude

How do we get there - II

- CKM parameters in the presence of loopmediated NP: $V_{cb,ub}^{incl,excl}$, $\gamma(B \rightarrow DK)$
- NP contributions to ΔF=2 amplitudes:
 β(b→ccs), β_s(b→ccs), D⁰→KK,Kπ,Kππ, A_{sL}^{d,s},
 (ΔΓ/Γ)_{d,s}

How do we get there - III

- NP contributions to $\Delta F=1$ amplitudes:
 - b \rightarrow s: $\beta(B\rightarrow K_{s}\phi,K_{s}K_{s}K_{s},...), B_{s}\rightarrow K^{*0}K^{*0}$ (penguins), B $\rightarrow K^{(*)}\pi$ (penguins & ewp), B $\rightarrow X_{s}vv$ (ewp), B $\rightarrow X_{s}\gamma$ (BR&ACP) (photon peng), B $\rightarrow X_{s}II$ (BR&AFB) (photon & ewp), $\beta(B\rightarrow K_{s}\pi^{0}\gamma)$ (RH ops), B_s \rightarrow µµ (scalar peng)
 - b \rightarrow d: $\alpha(B\rightarrow\pi\pi,\rho\pi,\rho\rho)$ (ewp), $B\rightarrow X_d vv$ (ewp), $B\rightarrow X_d \gamma$ (BR&ACP) (photon peng), $B\rightarrow X_d II$ (BR&AFB) (photon & ewp), S(B $\rightarrow \rho^0\gamma$) (RH ops), $B_d\rightarrow\mu\mu$ (scalar peng)
 - $s \rightarrow d$: $K_L \rightarrow \pi^0 \nu \nu$, $K^+ \rightarrow \pi^+ \nu \nu$ (ewp), $K_L \rightarrow \pi^0 II$ (photon & ewp)

How do we get there - IV

- LFV: $\tau \rightarrow \mu\gamma$, $\tau \rightarrow e\gamma$, $\mu \rightarrow e\gamma$ (photon peng), $\tau \rightarrow \mu II$, $\tau \rightarrow eII$, $\mu \rightarrow eee$, $\mu \leftrightarrow e$ (photon, ewp & boxes), $\tau \rightarrow \mu\eta$, $\tau \rightarrow e\eta$ (photon, ewp, boxes & Higgs)
- Lepton Universality: $K \rightarrow ev/K \rightarrow \mu v$, $B \rightarrow \tau v/B \rightarrow \mu v$ (Higgs)
- Charged current scalar interactions: $B \rightarrow \tau v$ (Higgs)

Experimental...

B physics @Y(4S)

Observable	B factories (2 ab^{-1})	Super B (75 ab^{-1})
$sin(2\beta) (J/\psi K^0)$	0.018	0.005 (†)
$cos(2\beta) (J/\psi K^{*0})$	0.30	0.05
$sin(2\beta)$ (Dh ⁰)	0.10	0.02
$cos(2\beta)$ (Dh ⁰)	0.20	0.04
$S(J/\psi \pi^0)$	0.10	0.02
$S(D^{+}D^{-})$	0.20	0.03
$S(\phi K^0)$	0.13	0.02 (*)
$S(\eta' K^0)$	0.05	0.01 (*)
$S(K_{S}^{0}K_{S}^{0}K_{S}^{0})$	0.15	0.02 (*)
$S(K_{S}^{0}\pi^{0})$	0.15	0.02 (*)
$S(\omega K_{\underline{S}}^{0})$	0.17	0.03 (*)
$S(f_0 K_S^0)$	0.12	0.02 (*)
γ (B \rightarrow DK, D \rightarrow CP eigenstates	s) $\sim 15^{\circ}$	2.5°
$\gamma (B \rightarrow DK, D \rightarrow \text{suppressed stat})$	tes) $\sim 12^{\circ}$	2.0°
$\gamma (B \rightarrow DK, D \rightarrow \text{multibody stat})$	$\sim 9^{\circ}$	1.5°
$\gamma (B \rightarrow DK, \text{ combined})$	$\sim 6^{\circ}$	1-2°
$\alpha (B \rightarrow \pi \pi)$	$\sim 16^{\circ}$	3°
$\alpha (B \rightarrow \rho \rho)$	$\sim 7^{\circ}$	$1-2^{\circ}$ (*)
$\alpha (B \rightarrow \rho \pi)$	$\sim 12^{\circ}$	2°
α (combined)	$\sim 6^{\circ}$	$1-2^{\circ}$ (*)
$2\beta + \gamma (D^{(*)\pm}\pi^{\mp}, D^{\pm}K^{0}_{S}\pi^{\mp})$	20°	5°
$ V_{cb} $ (exclusive)	4% (*)	1.0% (*)
V _{cb} (inclusive)	1% (*)	0.5% (*)
$ V_{ub} $ (exclusive)	8% (*)	3.0% (*)
V _{ub} (inclusive)	8% (*)	2.0% (*)
$BR(B \rightarrow \tau \nu)$	20%	4% (†)
$BR(B \rightarrow \mu\nu)$	visible	5%
$BR(B \rightarrow D\tau\nu)$	10%	2%
$BR(B \rightarrow \rho \gamma)$	15%	3% (†)
$BR(B \rightarrow \omega \gamma)$	30%	5%
$A_{CP}(B \rightarrow K^* \gamma)$	0.007 (†)	0.004 († *)
$A_{CP}(B \rightarrow \rho \gamma)$	~ 0.20	0.05
$A_{CP}(b \rightarrow s\gamma)$	0.012 (†)	0.004 (†)
$A_{CP}(b \rightarrow (s + d)\gamma)$	0.03	0.006 (†)
$S(K_S^0 \pi^0 \gamma)$	0.15	0.02 (*)
$S(\rho^{0\gamma})$	possible	0.10
$A_{CP}(B \rightarrow K^* \ell \ell)$	7%	1%
$A^{FB}(B \rightarrow K^*\ell\ell)s_0$	25%	9%
$A^{FB}(B \rightarrow X_s \ell \ell) s_0$	35%	5%
$BR(B \rightarrow K\nu\overline{\nu})$	visible	20%
$BR(B \rightarrow \pi \nu \bar{\nu})$	-	possible

Mode	Observable B]	Factor	ties (2 ab^{-1})	SuperB (75 ab^{-1})	
$D^0 \rightarrow K^+ K^-$	y_{CP}	2–3	$\times 10^{-3}$	5×10^{-4}	
$D^0 \rightarrow K^+ \pi^-$	y'_D	2-3	$\times 10^{-3}$	7×10^{-4}	
	$x_{D}^{\prime 2}$	1 - 2	$\times 10^{-4}$	3×10^{-5}	
$D^0 \rightarrow K^0_s \pi^+ \pi^-$	y_D	2–3	$\times 10^{-3}$	5×10^{-4}	Charm
	x_D	2–3	$\times 10^{-3}$	5×10^{-4}	nhuaiaa
Average	y_D	1 - 2	$\times 10^{-3}$	3×10^{-4}	physics
	x_D	2–3	$\times 10^{-3}$	5×10^{-4}	Sensitivity
			$D^0 \rightarrow 0$	$e^+e^-, D^0 \to \mu^+\mu^-$	1×10^{-8}
τ phys	ics		$D^0 \rightarrow T^0$	$\pi^0 e^+ e^-, \ D^0 \to \pi^0 \mu^+ \mu$	$i^{-} 2 \times 10^{-8}$
D	0	_	$D^0 \rightarrow 0$	$\eta e^+ e^-, D^0 \to \eta \mu^+ \mu^-$	3×10^{-8}
Frocess	Sensitivity		$D^0 \rightarrow 0$	$K_s^0 e^+ e^-, \ D^0 \to K_s^0 \mu^+$	μ^{-} 3 × 10 ⁻⁸
$\mathcal{B}(\tau \rightarrow \mu \gamma)$	2×10^{-9}		$D^+ \rightarrow$	$\pi^+ e^+ e^-, D^+ \to \pi^+ \mu^-$	μ^{-} 1 × 10 ⁻⁸
$\mathcal{B}(\tau \to e \gamma)$	2×10^{-9}		- 0		2
$\mathcal{B}(\tau \rightarrow \mu \mu)$	(1) 2×10^{-10}		$D^0 \rightarrow$	$e^{\pm}\mu^{\mp}$	1×10^{-8}
$\mathcal{D}(r \rightarrow \mu \mu)$	μ) 2×10		$D^+ \rightarrow$	$\pi^{+}e^{\pm}\mu^{\mp}$	1×10^{-8}
$\mathcal{B}(\tau \rightarrow eee)$	2×10^{-10}		$D^0 \rightarrow T^0$	$\pi^{0}e^{\pm}\mu^{\mp}$	2×10^{-8}
$\mathcal{B}(\tau \to \mu \eta)$	4×10^{-10}		$D^0 \rightarrow 0$	$\eta e^{\pm} \mu^{\mp}$	3×10^{-8}
$\mathcal{B}(\tau \rightarrow e\eta)$	6×10^{-10}		$D^0 \rightarrow 0$	$K_s^0 e^{\pm} \mu^{\mp}$	3×10^{-8}
$\mathcal{B}(-)$	2×10^{-10}				
$B(\tau \rightarrow \ell K_s)$	$\frac{1}{10}$	- \	$D^+ \rightarrow$	$\pi^- e^+ e^+, D^+ \to K^- e^+$	$+e^+$ 1 × 10 ⁻⁸
+ ticphy)	$D^+ \rightarrow$	$\pi^-\mu^+\mu^+, D^+ \rightarrow K^-\mu^+$	$\mu^+\mu^+$ 1 × 10 ⁻⁸
u phys	ice		$D^+ \rightarrow$	$\pi^- e^\pm \mu^+, D^+ \to K^- \epsilon$	$e^{\pm}\mu^{+}$ 1 × 10 ⁻⁸
μρηγο	ics				
	10-13			nhycica	
µ→ere	10			s physics	
µ→e cor	1v. @ 10 ⁻¹⁸				
			E	ર્⊸μ⁺μ⁻ @ 1	0-9
Knk	Neice			- in 2 B (T/)I(+)	@ 1º
_ r pr	iysics		S	inzp _s (J/Ψφ)	
K Sou/K Sure @ 0.1		Λ1	or c	$S(B \rightarrow \phi \phi) @ :$	2°
K→eV/	$\sim \kappa \rightarrow \mu \nu \omega$	U.1	70		-
Κ→πν	v @ 10 ⁻¹²				
	•••				D 10

Luca Silvestrini

...and theoretical efforts needed!

no theory improvements needed	β(J/ψ K), γ(DK), α, lepton FV & UV, CPV in B->Xγ, D and τ decays, zero of FB asymmetry B->X _s ⁺ ⁻	SM already known with the required accuracy
improved lattice QCD	meson mixing , B->D(*)lv,B->π(ρ)lv, B->K*γ, B->ργ, B->lv, B₅->μμ	target error: ~1-2% Feasible (see SuperB CDR)
improved OPE+HQE	B->X _{u,c} Iv	target error: ~2-3% Feasible getting exp. rid of annihilation & shape function (see arXiv:0810.1312)
improved QCDF or SCET or flavour symmetries or data driven methods	S's from TD A _{CP} in b -> s transitions	target error: ~2-3% need either breakthrough in computing power corrections or data-driven approaches (Dalitz analyses particularly favourable)

$$m_{d}^{2} = \begin{pmatrix} (m_{11}^{2})_{LL} & (\Delta_{12}^{d})_{LL} & (\Delta_{13}^{d})_{LL} & (\Delta_{11}^{d})_{LR} & (\Delta_{12}^{d})_{LR} & (\Delta_{13}^{d})_{LR} \\ (\Delta_{12}^{d})_{LL} & (m_{22}^{2})_{LL} & (\Delta_{23}^{d})_{LL} & (\Delta_{21}^{d})_{LR} & (\Delta_{22}^{d})_{LR} & (\Delta_{23}^{d})_{LR} \\ (\Delta_{13}^{d})_{LL}^{*} & (\Delta_{23}^{d})_{LL} & (m_{33}^{2})_{LL} & (\Delta_{31}^{d})_{LR} & (\Delta_{32}^{d})_{LR} & (\Delta_{33}^{d})_{LR} \\ (\Delta_{11}^{d})_{LR}^{*} & (\Delta_{21}^{d})_{LR}^{*} & (\Delta_{31}^{d})_{LR} & (m_{11}^{2})_{RR} & (\Delta_{12}^{d})_{RR} & (\Delta_{13}^{d})_{RR} \\ (\Delta_{12}^{d})_{LR}^{*} & (\Delta_{22}^{d})_{LR}^{*} & (\Delta_{32}^{d})_{LR}^{*} & (\Delta_{12}^{d})_{RR} & (\Delta_{23}^{d})_{RR} \\ (\Delta_{12}^{d})_{LR}^{*} & (\Delta_{22}^{d})_{LR}^{*} & (\Delta_{33}^{d})_{LR}^{*} & (\Delta_{12}^{d})_{RR} & (\Delta_{23}^{d})_{RR} \\ (\Delta_{13}^{d})_{LR}^{*} & (\Delta_{23}^{d})_{LR}^{*} & (\Delta_{33}^{d})_{LR}^{*} & (\Delta_{13}^{d})_{RR}^{*} & (\Delta_{23}^{d})_{RR} & (m_{33}^{2})_{RR} \end{pmatrix}$$

(Some of the) Diagonal sfermion masses will be measured @ LHC; off-diagonal terms to be determined from flavour (relevant parameters: $(\delta^{d}_{ij})_{AB} = (\Delta^{d}_{ij})_{AB}/(m_{ii})_{AA}(m_{jj})_{BB})$

Luca Silvestrini

Reconstructing $(\delta_{13}^d)_{LL}$ =0.085 e^{i\pi/4} and $(\delta_{23}^d)_{LR}$ =0.028 e^{i\pi/4} for m_{SUSY}=1TeV

- For a full reconstruction of the hadronic part of the SUSY Lagrangian, need % knowledge of meson mixings (including D) and FCNC decays
- Agreement with the SM as useful as disagreement
- If deviation from SM in B_s confirmed, effort in measuring b \rightarrow s decays mandatory
- Notice that a large b ↔ s mixing could invalidate standard LHC strategies to search for SUSY Flavour @ LHC Workshop, arXiv:0801.1800

CONCLUSIONS: PRESENT

- Present status: control CKM + NP Δ F=2 at the 20-30% level, except for B_s mixing where O(1) NP is favoured
- Bounds on NP scale tell us that NP can be within the LHC reach only if
 - it is MFV-like within at most 40% or
 - it contributes O(1) to b \leftrightarrow s and <40% elsewhere

CONCLUSIONS: FUTURE

- Control CKM + NP in
 \[AF=1,2 at the % level;
 push down searches for LFV by two orders
 of magnitude or lower; improve tests of LU
- Ensure determination of flavour structure of whatever NP seen at the LHC
- Ensure sensitivity to moderately finetuned NP above the LHC reach
- Requires covering the full spectrum of B_(s),
 D, K and LFV observables

Luca Silvestrini

BACKUP SLIDES

Luca Silvestrini

The basic step: CKM matrix at the %

Luca Silvestrini

INFN, Sez. di Roma, Congressino 2009

LFV in an SO(10) SUSY-GUT

$I_i \rightarrow I_i II$ and $I_i \rightarrow I_i P$ useful to constrain Higgs and box contributions