Readiness of the CMS and ATLAS experiments for the first collisions at LHC

Fabio Anulli Roma, May 4th, 2009

Outline

- LHC: plans toward beam collisions
- ATLAS: status and commissioning
- CMS: status and commissioning
- September 10-13, 2008: First beams in LHC
- Preliminary plans for super-LHC

The LHC project

pp collisions at $\sqrt{s} = 10-14$ TeV==>up to x7 TevatronHigh luminosity: $L_{design} = 10^{34}$ cm⁻² s⁻¹==>x100 TevatronDesigned also for heavy ion collisionsFirst collision expected in November 2009!==>

LHC restart plan

Year	2009									1	2010								\frown							2011										
Month	F	M	A	М	J	J	A	S	0	N	Þ	J	F	М	A	M	J	J	A	S	0	N	D	J	F	М	A	М	J	J	A	S	0	Ν	D	
		_		_	_		_	_	24.1	wook	dnk	wcie		oc r ik	lo		-	_	_				I													
Base '		Shutdown SU								Physics									Shutdown (Relief V)					SU PH PH PH PH PH PH PH						PH						
									44 \	veek	s ph	nysio	s po	ossib	le						- (0): 	F	-	-	-											
		Gain 20 weeks of physics											2010 by running during winter months										1			0	t:									

- The machine will be cold by mid August, ready for first injected beam by second half of September
 - □ last refurbished magnet installed on April 30
- Physics run at 5 TeV until Autumn 2010
 - □ First physics run (~10 months long) at center of mass energy of 10 TeV
 - □ Heavy ion Pb-Pb collision toward the end of the run
- Then complete installation of additional extra pressure relief valves on remaining dipole cryostat (essential for maximum energy operation)
- Restart in Spring 2011 with increasing beam energies

COMPOSIZIONE DEL GRUPPO DI ROMA

Ricercatori:

- A. De Salvo
- A. Di Domenico
- C. Dionisi
- C. Bini
- C. Luci
- D. De Pedis
- E. Petrolo
- E. Pasqualucci

F. Anulli

F. La Cava

M. Rescigno L. Nisati

- P. Bagnaia
- F. Marzano P. Gauzzi G. Ciapetti
- G. De Zorzi R. Vari
- L. Luminari S. Gentile
- L. Zanello S. Falciano
- L. Pontecorvo S. Giagu
 - S. Veneziano

TD/Assegnisti:

A. Di Girolamo

F. Safai Tehrani

E. Solfaroli

M. Verducci

S. Rosati

F. Pastore

Dottorandi:

S. Borroni

C. Maiani

Laureandi:

G. Artoni

- P. Bagiacchi
- M. Bettiol
- V. Consorti
- F. I o Sterzo
- L. Mazzaferro
- M. Vanadia

Tecnici:

- D. Anzellotti
- G.Chiodi
- R. Lunadei
- E. Gennari
- A. Ruggieri
- D. Ruggieri

ATLAS Experiment

ATLAS Collaboration 37 Countries 169 Institutions >2500 Scientific Authors

Detector Commissioning

- Commissioning started in 2005 in parallel with detector assembling
- several cosmic ray runs periodically programmed
- from August 2009 should move in continuous run mode for preparation for collisions
- Test channel mapping and timing
- Determine dead and noisy channels
- Verify stability of hardware components during operation
- Gain experience in all aspects of detector operation and control, DAQ and analysis chain
- Obtain first calibration and alignment constants
- Develop and test monitoring tools
- Understand and improve detector performances

most of data collected in fall 2008, after LHC accident ==> 216M of selected cosmic ray events

Inner Detector and Calorimeters

Operated inside the 2-T magnetic field η <2.5 (TRT: η <2.0) σ/p_T = (0.05 p_T + 1)%

Pixel + Silicon micro-strips

- + Transition Radiation (both tracking and e/π ID)
- >97% of channels operational
- very few noisy channels

EMC:

Pb-LAr, with accordion geometry
Longitud. segmentation
OK Calibration procedures
Dead channels <1% (recoverable)

Hadronic Cal. - Barrel: Fe + Sci.Tiles - EndCap: Cu-LAr - Forward: W-LAr - Dead Channels <1.5% (mostly recoverable)

Electromagnetic energy resolution: $\begin{aligned} \sigma(E)/E &= 10\%/\sqrt{E} \oplus 0.7\% \\ \text{Hadronic energy resolution:} \\ \sigma(E)/E &= 50\%/\sqrt{E} \oplus 3\% \quad (\eta < 3.2) \\ \sigma(E)/E &= 100\%/\sqrt{E} \oplus 10\% \quad (\eta > 3.1) \end{aligned}$

EMC pedestal stability (5 months period)

luon spectrometer

Muon Trigger (for $\eta < 2.4$) End-cap Trigger: Thin Gap Chambers (TGC) - 2D readout; $\sigma_t < 10$ ns - 99.8% of chambers operational Barrel Trigger: Resistive Plate Chambers - 2D readout $-\sigma_t \sim 2 \text{ ns}$ - >90% coverage (goal for 2009 95.5%) - dead strips <2% hot strips <1%

stand-alone p_{T} measurement with precision chambers $-\Delta p_T/p_T < 10\%$ up to 1 TeV

EndCap: Cathode strip Chambers (CSC) Monitored Drift Tubes

~100% of chambers operational

Barrel: Monitored Drift Tubes - 99.8% of chambers operational - dead ch: 0.1% (+1% recoverable)

Rome group activities in the muon project:

- MDT construction/test/commissioning (BIL chambers)
- MDT calibration (use the TIER2 in Rome)
- Barrel Level-1 trigger (design/implementation/commissioning) ==> system responsible: S. Veneziano
- High Level Trigger
- DAQ ==> responsible E. Pasqualucci
- Other responsibilities:
- Deputy Physics Analysis Coordinator (A. Nisati)
- Physics Analysis Tools (S. Giagu)

Roma, May 4, 2009

Muon System

Big Wheel (TGC visibles)

cosmic tracks reconstructed in the barrel RPC and projected onto cavern surface ==> "density map"

F. Anulli

Barrel Level 1 Trigger

- Output rate for the whole trigger <75kHz, from the initial 1GHz

- Short latency; bunch crossing identification
- "Full" efficiency on rare new processes

Fast and high redundancy system

- Wide p_T-threshold range with 2 separate systems: low p_T and high p_T trigger
- Safe Bunch Crossing Identification
- Strong rejection of fake muons
- 1/8 BC interpolator to measure RPC timing hit

RPC time alignments within the same Trigger Tower from time difference between hits of different layers. Time is measured in 1/8 BC unit

Limited coverage during fall cosmic ray campaign. Continuously improving, now almost OK. Will reach full coverage for (new) LHC start-up

High Level Trigger

The software ATLAS HLT trigger is realized in two main steps

□ Level 2

- Event Filter
- Use information from all detectors within a Region Of Interest (ROI) individuated by the LVL1 trigger, to provide a high quality track measurement keeping the processing and decision time short

Level 2

- several algorithm developed partially serialized

 - μlso: select isolated muons from EW processes
 - μTile: identify muons from energy deposited in Hadcal

Event Filter

- final selection with improved p_T measurement
- record the full event on disk

Barrel MDT calibration and DQM

- $80-\mu$ m resolution on single hit is required in the coordinate orthogonal to B-field
- Accuracy in determination of detector alignment and of drift time
- *r-t* relations change with time because of many variables, making impossible to reach the required accuracy if not properly calibrated
- Daily determination of the *r-t* relation for each chambers and weekly computation of each tube require ~10⁸ muon tracks per day!
- Not achievable using standard ATLAS Data Flow
- = ==> need a dedicated data stream, extracted from the Level2 Trigger
- the system has been designed by the Rome group

- at the T2 in Rome, the calibration stream is used also for Data Quality Monitor
- histograms of significant quantities are compared to references and an automatic decision about the quality is taken

F. Anulli

Display of a cosmic ray event

CMS

COMPOSIZIONE DEL GRUPPO DI ROMA

Ricercatori:

- L. Barone
- F. Cavallari
- D. del Re
- M. Diemoz
- E. Longo
- G. Organtini
- R. Paramatti
- S. Rahatlou

Tecnici:

A. Bartoloni I. Dafinei

TD/Assegnisti:

E. Di Marco F. Safai Therani C. Rovelli

Dottorandi: D. Franci A. Palma F. Pandolfi

Laureandi:

M. Grassi

CMS detector layout

CMS

2930 Scientists

184 Institutions

<u>How does it work</u>

Barrel DT residual

Cosmic Run at Four Tesla (CRAFT)

Run 66748, Event 8900172, LS 160, Orbit 167345832, BX 2011

F. Anulli

- CMS ran for 4 weeks continuously to gain operational experience
- Study effects of B field on detector components
- 370M cosmic events collected (290M with B = 3.8 T)
- good overall efficiency
- successful integration of all components

Electromagnetic Calorimeter

ECAL: Homogeneous crystal calorimeter ■ PbWO₄ ~10 m³, 90 tons

Barrel:

- |η| < 1.48
- 36 SuperModules
- 61200 crystals
- $-22 \times 22 \times 23 \text{ cm}^3$

Optimized for $H \rightarrow \gamma \gamma$ discovery, (SM Higgs with $m_{\rm H} < 120 \text{ GeV}/c^2$) with $\le 10 \text{ fb}^{-1}$ ==> goal $\sigma(E)/E \approx 0.5\%$ at high energies

EndCaps:

- 1.48 < |η| < 3.0
- 4 Dee's
- 14648 crystals
- 3 x 3 x 22 cm³

ECAL Deputy Project Manager: M. Diemoz

Rome group activities in the ECAL project:

- R&D/construction/test/commissioning (Barrel)
- HV: design/realization/monitoring
- Data Base (construction/configuration/condition)
- ECAL Calibration and Data Quality Monitoring
- Calibration at Tier2 Roma (physics calibration channels)

Rome group responsibilities :

- ECAL Editorial Board: E. Longo
- ECAL HV:
- ECAL DQM: E. Di Marco
- ECAL Data Base: F. Cavallari
- ECAL calibration:
- T2 Rome:

- E. Di Marco

- R. Paramatti
- L.M. Barone

Cluster occupancy and time

- Top and bottom regions more populated due to vertical cosmic rays flux
- excess in the top EB- region, in correspondence of the shaft
- white regions: masked towers
- some low voltage problems (being resolved)

- Time measured in clock unit (25 ns) w.r.t. nominal setting for collisions
- Observed delays due to time of flight

Energy spectrum

Energy deposited in the ECAL in cosmic runs.

APD gain set to 200 (x4 normal operation)

Bethe-Bloch

10

10²

p (GeV/c)

Corresponding measured de/dx. tracks selected with the muon system

- Momentum from track reconstruction in ID Energy measured in the ECAL cluster matched to the track
- Very good agreement with expectations ==> both momentum end energy scale OK ==> simultaneous check of tracking reconstruction and crystals calibration (performed with electron beams before installation)

1

-CAL energy calibration

 Energy resolution at high energies dominated by constant term

- ==> channel-to-channel intercalibration is essential
- Several steps and procedures
 - $\frac{1}{4}$ of Barrel calibrated with electron beams, $\sigma/E \sim 0.3\%$
 - the rest of Barrel is being calibrated with cosmics:
- ~1.5-2.5% depending on η
 - EC calibrated at ~9% with light yield measurements
- calibration with beams
 - beam halo for EC ==> \sim 2-3%
- π^0 -> $\gamma\gamma$, Z→ee, and azimuthal symmetry of energy deposit of MB events
- isolated electrons, $Z \rightarrow \mu \mu \gamma$ → longer term

Control of crystal transparency with laser:

- crystal transparency reduced with time during LHC operation, recover in a few hours
- laser light injected into crystal, during LHC abort gaps
- get corrections to the crystals response
- spot problematic channels -

Roma, May 4, 2009

monitoring of crystal response in a Barrel half-SM with laser light injection

first

data

F. Anulli

Not only cosmic rays.

BEAM SPLASH events recorded

ATLAS offline event display

140 m

muons showers

LHC beam

CMS event display

~2x10⁹ protons on collimators located ~150m upstream

Example of use of single beam runs

CMS

 check linearity of energy deposit in the calorimeters, from splash events

Energy deposit in the Barrel
TileCal from beam splash
Note the 8-fold structure in phi corresponding to end-cap toroid coils
Similar effect observed in EM LAr calorimeter

Roma, May 4, 2009

<u>.HC upgrade plan</u>

- LHC designed for $L_{max} = 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
- Shutdown winter 2013-14: Phase-I
 - new Linac, brighter beam, ultimate current
 - new large-aperture focusing quadrupoles: β=55cm-->25cm

operation

 \Box L_{max} = 3x10³⁴ cm⁻²s⁻¹

- new injectors + IR upgrade
- \Box L_{max} = 10³⁵ cm⁻²s⁻¹
- major upgrade of the experiments

Roma, May 4, 2009

CMS

detector

technologies under study

Phase-II: ATLAS muon system upgrades

Aircore toroid does not provid shielding:

- Severe problems in forward regions
- ==> Replace Small Wheel, maybe inner part of Big Wheel, add shielding
- Intervention needed also in the Barrel at least for triggering upgrade (threshold sharpening)
- Study in progress by many groups
- Barrel upgrade for trigger threshold sharpening
 - presently trigger roads enlarged because of *pp* collision spread along *z*
 - ==>inclusive muon rates will be about 100 kHz @20 GeV and 50 kHz @40 GeV
 - adding a trigger layer at BI eliminate the collision spread
 - for 40GeV PT, outer layer cone size is reduced from ± 1.5 to ± 1 strip
 - under study also the addition of an extra layer on outer chambers

Conclusions

- The LHC accident on September 19th, delayed of about one year the begin of this exciting adventure
- However the experiments are not sitting and waiting
- Installation and/or commissioning of all systems is being finalized
- Hundreds of millions of cosmic ray events have been collected
 - setting up/testing of:
 - the entire Trigger&DAQ chain
 - detector control and monitoring
 - calibration procedures
 - data quality
 - integration of the various subsystems
 -
- All experiments are on track to be fully operational for the first collisions that will be provided by LHC at the end of the year
- The search for the unknown can begin!

BACKUP SLIDES

combined performance from cosmics

compare fitted parameters of tracks reconstructed in the ID and in the MS (standalone) reasonable agreement with MC

 $z_0(ID) - z_0(MS)$

∆p between ID and MS gives a measurement
 of energy absorbed by the calorimeters
 => it averages at ~3 GeV