First analysis results

Luisa Alunni Solestizi, Maurizio Biasini, Leonello Servoli

University and INFN of Perugia

Roma, 07/09/2017

Source: ${}^{90}Sr$, β^- emitter $t_{1/2}$ (half-life) ~ 29 years, A_0 (nominal activity)=35.7 kBq no collimator - r=12.5 cm integration time=200 ms × 2000 frames **Sensor:** MT9V115

Pixel/Cluster energy at different primary threholds

500 1000 1500 2000

Entries (%)

25

20

10 E = =

0

100

3000

Cluster energy [ADC]

Pixel/Cluster energy integral VS primary threshold

Cluster3x3Integral VS thres

Pixel/Cluster energy at 1thres=100 ADC - Landau fit

Pixel/Cluster energy at 1thres=100 ADC - Landau fit

	MPV	Sigma	X^2/ndf
Single pixel	83	20.1	6.5
Cluster 3x3	633	194	1.9
Cluster 5x5	812	252	1.7
Cluster 7x7	915	310	1.5

Primary threshold=100 ADC

Reasons:

- maximizes S/N ratio in the cluster energy distribution
- after 100 the integral distribution curve varies its slope

Results:

- Good Landau shape for clusters $(\chi^2/ndf < 2)$
- MPV and Sigma increasing with cluster sub-matrix dimension, as expected (more captured signal but more noisy pixels)

Asymm. cluster energy, 1thres=100 ADC, four 2thres- Landau fit

7 / 19

Asymm. cluster energy, 1thres=100 ADC

2thres (ADC)	MPV	Sigma	X^2/ndf
10	905	310	2.3
20	846	318	2.0
30	805	314	2.0
40	770	310	1.8

secondary threshold=30 ADC

- MPV comparable with 5x5 cluster
- good Landau shape $(\chi^2/ndf = 2)$

Source: ${}^{90}Sr$ Measure: position scan of step = 1 mm Cu collimator featuring d=1 mm sensor-source height z=8 mm Sensor: MT9V011

Possible increasing the spatial resolution (hole diameter measure) dividing the sensor in strips?

	σ [pixel]	σ [mm]
1 strip	660 ± 16	$3,71\pm0,09$
4 strip	645 ± 9	$3,65\pm0,05$
8 strip	672 ± 5	$3,76\pm0,03$

Geometrical simulation:

2-dimensional circular source variable parameters: activity, source radii (r) and sensor-source height (z) $% \left(z\right) =\left(z\right) \left(z\right) \left($

Data: ${}^{90}Y$ in agar agar and ${}^{90}Sr$

Simulation/data comparison

$\begin{array}{l} \mathsf{Background} \text{ - radius} = 11 \ \mathsf{mm} \\ \underset{\mathsf{Graph}}{\text{ simulation:}} \end{array}$

data:

Simulation

Geometrical simulation: 2-dimensional circular source, variables: radius (r) and sensor-source height (z) FWHM and maximum are the parameters of the resulting scan graph

(counts VS sensor position)

Simulation/data comparison

Source bigger then sensor:

 $\phi = \alpha \Omega d^2$

 α constant, Ω acceptance, *d* source diameter.

approx : $\Omega \sim 1/d \rightarrow \phi \sim d$

Simulation/data comparison

Figura (7.13). Parametrizzazione dell'andamento della σ del fit gaussiano della scansione in posizione in funzione del diametro della sorgente.

Photon/electron discrimination $\beta^{-}(Sr)$, γ (Cu, Fe, Mo, Sn)

β and γ source comparison

of pixel VS signal in a cluster

γ source at different gains

of pixel VS signal in a cluster

of pixel VS signal in a cluster

