Exotic Hadron Spectroscopy

J. Brodzicka (Krakow) PIC08, Perugia

- What is exotic, what can be exotic?
- Spectroscopic opportunities of B-Factory
- Recently observed cc-like XYZ states
- New observations of (explicitly) exotic states
- Possible analogs of XYZ states in ss and bb systems
- Summary

NA

- States beyond qq are not forbidden by QCD
- Some of them can have explicitly exotic properties:
 - J^{PC} forbidden for quarkonia: 0⁺⁻, 1⁻⁺, 2⁺⁻...
 - Decay channels that cannot be constructed from initial qq quarks
- The others reveal unnatural properties (like small width)

Phenomenology menu of exotics:

- Hybrids: c<u>c</u>+ constituent gluons
 - Can bear exotic J^{PC}
 - D<u>D</u>** final states dominate over D<u>D</u>, D<u>D</u>*
 - Possible large partial widths for hadronic transitions (ψππ, ψω...)
 - Lowest cc-hybrids predicted by lattice QCD @4.2GeV
- Tetraquarks: diquark-antidiquark [cq][cq]
 - tightly bound by gluon exchange
 - decays: quark rearrangements followed by dissociation (hadronic transitions or open charm decays)
- Molecules: M(c<u>q</u>)M(<u>c</u>q)
 - loosely bound meson-antimeson state
 - bind through pion exchange
 - decays: dissociation into constituent mesons

Q

Exotic states

Many c<u>c</u>-like states reported so far...

State	EXP	M + i Γ (MeV)	\mathbf{J}^{PC}	Decay Modes Observed	Production Modes Observed
X(3872)	Belle,CDF, DO, Cleo, BaBar	3871.2 <u>±</u> 0.5 + i(<2.3)	1++	π⁺π⁻J/Ψ, π⁺π⁻π⁰J/Ψ, ƳJ/Ψ	B decays, ppbar
	Belle BaBar	3875.4 <u>+</u> 0.7 ^{+1.2} _{-2.0} 3875.6 <u>+</u> 0.7 ^{+1.4} -1.5		D ^o D ^o n ^o	B decays
Z(3930)	Belle	3929±5±2 + i(29±10±2)	2++	D ⁰ D ⁰ , D⁺D⁻	۲۲
Y(3940)	Belle BaBar	3943 <u>±11±13</u> + i(87±22±26) 3914.3 ^{+3.8} - _{3.4} ±1.6+ i(33 ⁺¹² - ₈ ±0.60)	J++	ωJ/ψ	B decays
X(3940)	Belle	3942 ⁺⁷ -6±6 + i(37 ⁺²⁶ -15±8)	J [₽]	DD*	e⁺e⁻ (recoil against J/ψ)
Y(4008)	Belle	4008±40 ⁺⁷² -28 + i(226±44 ⁺⁸⁷ -79)	1	π⁺π⁻Ј/ψ	e⁺e⁻ (ISR)
X(4160)	Belle	4156 ⁺²⁵ - ₂₀ ±15+ i(139 ⁺¹¹¹ - ₆₁ ±21)	J [₽]	D*D*	e⁺e⁻ (recoil against J/ψ)
Y(4260)	BaBar Cleo Belle	$\begin{array}{l} 4259 \pm 8^{+8} _{-6} + i(88 \pm 23^{+6} _{-4}) \\ 4284^{+17} _{-16} \pm 4 + i(73^{+39} _{-25} \pm 5) \\ 4247 \pm 12^{+17} _{-32} + i(108 \pm 19 \pm 10) \end{array}$	1	π⁺π⁻J/ψ, π⁰π⁰J/ψ, Κ⁺Κ⁻J/ψ	e⁺e⁻ (ISR), e⁺e⁻
Y(4350)	BaBar Belle	4324±24 + i(172±33) 4361±9±9 + i(74±15±10)	1	π⁺π⁻ψ(2S)	e⁺e⁻ (ISR)
Z⁺(4430)	Belle	4433±4±1+ i(44 ⁺¹⁷ -13 ⁺³⁰ -11)	٦P	π⁺ψ(2S)	B decays
Y(4620)	Belle	4664±11±5 + i(48±15±3)	1	π⁺π⁻ψ(2S)	e⁺e⁻ (ISR)

E. Eichten QWG -- 5th International Workshop on Heavy Quarkonia DESY October 17-20, 2007

Many c<u>c</u>-like states reported so far...

State	EXP	М + і Г (MeV)	J ^{PC}	Decay Modes Observed	Production Modes Observed	
X(3872)	Belle,CDF, DO, Cleo, BaBar	3871.2 <u>±</u> 0.5 + i(<2.3)	1++	π⁺π⁻ፓ/ψ, π⁺π⁻π⁰ፓ/ψ, Υፓ/ψ	B decays, ppbar	
	Belle BaBar	3875.4 <u>+</u> 0.7 ^{+1.2} _{-2.0} 3875.6 <u>+</u> 0.7 ^{+1.4} -1.5		D ^o D ^o n ^o	B decays	
Z(3930)	Belle	3929 <u>±</u> 5±2 + i(29±10±2)	2**	D ⁰ D ⁰ , D⁺D⁻	ΥΥ	
Y (3940)	В	re they ordinary	I N r	exotic states	•	B decays
X(3940)		_ _	· (recoil against J/ψ)			
Y(4008)	but their properties are unusual					e⁺e⁻ (ISR)
X(4160)						· (recoil against J/ψ)
Y(4260)	B <mark>aban</mark> Cleo Belle	$4284^{17}_{-16} \pm 4 + i(73^{+39}_{-25}\pm 5)$ $4247\pm 12^{+17}_{-32} + i(108\pm 19\pm 10)$	1	π⁺π⁻J/ψ, π⁰π⁰J/ψ, Κ⁺Κ⁻J/ψ		e⁺e⁻ (ISR), e⁺e⁻
Y(4350)	BaBar Belle	4324±24 + i(172±33) 4361±9±9 + i(74±15±10)	1	π⁺π⁻ψ(2S)	e⁺e⁻ (ISR)	
Z⁺(4430)	Belle	4433±4±1+ i(44 ⁺¹⁷ -13 ⁺³⁰ -11)	٦Þ	π⁺ψ(2S)	B decays	
Y(4620)	Belle	4664 <u>±</u> 11±5 + i(48 <u>±</u> 15±3)	1	π⁺π⁻ψ(2S)	e⁺e⁻ (ISR)	

E. Eichten QWG -- 5th International Workshop on Heavy Quarkonia DESY October 17-20, 2007

Experiments

• Collaborative efforts of:

• I will focus on the most fertile: B-Factories

J. Brodzicka @ PICO8 **Production of cc** (-like) states in B-Factories

 B meson decays: B→Xcc K^(*) (BF~10⁻³)

• e^+e^- annihilation: double c<u>c</u> production $e^+e^- \rightarrow J/\psi Xcc$

e⁺e⁻ radiative return (ISR) e⁺e⁻ $\rightarrow\gamma_{ISR}X_{c\underline{c}}\rightarrow\gamma_{ISR}\psi\pi\pi$ $\downarrow^{\gamma_{ISR}}\pi^{\pi}\pi^{\pi}\psi^{\gamma^{*}}\psi^{\gamma^{$

• $\gamma\gamma$ collision e⁺e⁻ $\rightarrow\gamma\gamma\rightarrow$ Xc<u>c</u> \rightarrow D<u>D</u>

Clean environments to search for new states and study properties of known states

PRL100, 142001 (2008) **Observation of Z⁺(4430)** $\rightarrow \psi$ 'T⁺

- $B \rightarrow \psi' \pi^+ K$ (K=K⁻,K⁰_s) studied with 657M B<u>B</u>
- $\psi' \rightarrow l^+l^-$, $J/\psi \pi^+\pi^- J/\psi \rightarrow l^+l^-$ where $l=e,\mu$
- Clear signals in M_{bc} and ΔE
- K* regions excluded to study $\psi' \pi^+$
- M(ψ'π⁺) fit: Breit-Wigner + Phase Space like function

Z(4430) signal is robust:

- Z(4430) is not a reflection, parameters of Z stable
- too narrow to be produced by interferences between Кп partial waves

 $\begin{array}{ll} \mathsf{M} = 4433 \pm 4 \pm 2 \ \mathsf{MeV} & \Gamma = 45 \begin{array}{c} +18 \\ -13 \end{array} \begin{array}{c} +30 \\ -13 \end{array} \ \mathsf{MeV} \end{array} \\ \mathsf{BF}(\mathsf{B} \rightarrow \mathsf{KZ}) \ast \mathsf{BF}(\mathsf{Z} \rightarrow \psi' \pi^+) = (4.1 \pm 1.0 \pm 1.4 \) \ast 10^{-5} \end{array} \\ \mathsf{Statistics too low to determine J^P} \\ \overline{\mathsf{First candidate for a charged cc-like state!}} \\ \underline{\mathsf{Must be exotic!}} \end{array} \\ \end{array}$

Proposed interpretations:

- [cu][<u>cd</u>] tetraquark with $J^{P}=1^{+}$ (radial excitation of X(3872)) neutral partner expected in $\psi'\pi^{0}/\eta$, $\eta_{c}'\rho^{0}/\omega$
- D*<u>D</u>1(2420) threshold effect
- D*<u>D</u>₁(2420) molecule with J^P=0⁻, 1⁻, 2⁻ decay to D*<u>D</u>*п expected

Maiani, Polosa hep-ph/0708.3997

Rosner PRD 76, 114002(2007)

Meng, Chao hep-ph/0708.4222

Z(4430) signal is robust:

- Z(4430) is not a reflection, parameters of Z stable
- too narrow to be produced by interferences between Кп partial waves

$M = 4433 \pm 4 \pm 2 \text{ MeV} \quad \Gamma = 45 \begin{array}{c} +18 \\ -13 \end{array} \begin{array}{c} +30 \\ -13 \end{array} \text{MeV}$

 $\begin{array}{l} BF(B \rightarrow KZ)^*BF(Z \rightarrow \psi'\pi^+) = (4.1 \pm 1.0 \pm 1.4 \)^*10^{-5} \\ Statistics too low to determine J^P \\ \hline First candidate for a charged cc-like state! \end{array}$

Must be exotic!

Will trigger studies of other $B \rightarrow (c\underline{c})\pi^+K$ decays to search for similar exotics!

Proposed interpretations:

- [cu][<u>cd</u>] tetraquark with $J^{P}=1^{+}$ (radial excitation of X(3872)) neutral partner expected in $\psi'\pi^{0}/\eta$, $\eta_{c}'\rho^{0}/\omega$
- D*<u>D</u>1(2420) threshold effect
- D*<u>D</u>₁(2420) molecule with J^P=0⁻, 1⁻, 2⁻ decay to D*<u>D</u>*п expected

Maiani, Polosa hep-ph/0708.3997

Rosner PRD 76, 114002(2007)

Meng, Chao hep-ph/0708.4222

hep-ex/0806.4098 to be submitted to PRD

$\underline{B}^{0} \longrightarrow X_{C1} \Pi^{+} K^{-} study. More Z's?$

- $\underline{B}^0 \rightarrow \chi_{c1} \pi^+ K^-$ studied with 657M B<u>B</u>
- $\chi_{c1} \rightarrow J/\psi\gamma J/\psi \rightarrow e^+e^-, \mu^+\mu^-$
- Signal identified using $M_{bc,} \Delta E$ and $M(J/\psi \gamma)$
- Dalitz-plot analysis of $\underline{B}^0 \rightarrow \chi_{c1} \pi^+ K^-$

- $\underline{B}^0 \rightarrow \chi_{c1} \pi^+ K^-$ amplitude: coherent sum of Breit-Wigner contributions
- M($\chi_{c1}\pi$), M(K π) used to describe the reaction angular variables: $\theta\chi_{c1}$, $\theta_{J/\psi}$, $\varphi\chi_{c1}$, $\varphi_{J/\psi}$ integrated out in the analysis
- Binned maximum likelihood fit performed
- Models tried: known $K^* \rightarrow K\pi$ only;

K*'s + one $Z \rightarrow \chi_{c1} \pi^+$; K*'s + two Z states

<u>B</u>⁰ \rightarrow X_{c1}π⁺K⁻ Dalitz plot analysis: no Z

Null model: all known low-lying K⁻π⁺ resonances only:
 κ, K*(892), K*(1410), K₀*(1430), K₂*(1430), K*(1680), K₃*(1780)

<u>B</u>⁰ \longrightarrow X_{c1}π⁺K⁻ Dalitz plot analysis: one Z

• Single Z model: all known low-lying K⁻π⁺ resonances and one $Z \rightarrow \chi_{c1}\pi^+$ exotic resonance ($J_Z=0$)

M_Z= 4150+31-16 MeV Γ_Z= 352+99-43 MeV f_Z= 33.1+8.7-5.8%

Significance: 10.7σ (difference of -2InL for null and single Z models)

Fit CL: 0.1% only (from Toy MC study)

<u>B</u>⁰ \rightarrow X_{c1}π⁺K⁻ Dalitz plot analysis: two Z's

 Double Z model: all known low-lying K⁻π⁺ resonances and two Z_{1,2}→χ_{c1}π⁺ exotic resonances (J_{1,2}=0) M₁ =

$$\begin{split} M_1 &= (4051 \pm 14^{+20}_{-41}) \,\mathrm{MeV}/c^2, \\ \Gamma_1 &= (82^{+21+47}_{-17-22}) \,\mathrm{MeV}, \\ M_2 &= (4248^{+44+180}_{-29-35}) \,\mathrm{MeV}/c^2, \\ \Gamma_2 &= (177^{+54+316}_{-39-61}) \,\mathrm{MeV}, \end{split}$$

$$f_1 = (8.0^{+3.8+9.5}_{-2.2-4.2})\%$$

$$f_2 = (10.4^{+6.1+51.5}_{-2.3-0.7})\%$$

Significance: 5.7σ (difference of -2InL for double and single Z models) Fit CL: 40% (from Toy MC study)

(Х_{с1}П⁺

$\underline{B}^{0} \longrightarrow X_{c1}\Pi^{+}K^{-}: other models$

	Model	Significance	One Z^+ vs.	Significance
		of one Z^+	two Z^+	of two Z^+
1	default (see text)	10.7σ	5.7σ	13.2σ
2	no κ	15.6σ	5.0σ	16.6σ
3	no $K^*(1410)$	13.4σ	5.4σ	14.8σ
4	no $K_0^*(1430)$	10.4σ	5.2σ	14.4σ
5	no $K^*(1680)$	13.3σ	5.6σ	14.8σ
6	no $K_3^*(1780)$	12.9σ	5.6σ	14.4σ
7	add non-res. contribution	9.0σ	5.3σ	10.3σ
8	add non-res. contribution, no $K^*(1410)$	11.3σ	5.1σ	13.5σ
9	add non-res. contribution, no $K^*(1680)$	11.4σ	5.3σ	13.7σ
10	add non-res. contribution, no $K_3^*(1780)$	10.8σ	5.4σ	13.2σ
11	add non-res. contribution, release constraints on κ mass & width	9.5σ	5.3σ	10.7σ
12	add non-res. contribution, new K^* (J=1)	7.7σ	5.4σ	9.2σ
13	add non-res. contribution, new K^* (J=2)	6.2σ	5.6σ	8.1σ
14	LASS parametrization of S-wave component	13.1σ	5.7σ	14.6σ

- Including new K* doesn't give good description. The Z contribution(s) still necessary/significant
- Fit results taken into account in systematic errors and Z significance

$Z^+_{1,2} \rightarrow X_{C1}\Pi^+$ exotic states

- Model with two Z's significantly favored by data
- Spin of Z_{1,2} not determined: J=0 and J=1 hypotheses result with comparable fit qualities
- Non-zero charge suggests multiquark interpretation

M(χ_{c1}Π⁺) for 1<M²(K⁻Π⁺)<1.75GeV

- fit for null model
- —— fit for double Z model
- **Z**₁ contribution
- ----- Z₂ contribution

$$M_{1} = (4051 \pm 14^{+20}_{-41}) \text{ MeV}/c^{2},$$

$$\Gamma_{1} = (82^{+21+47}_{-17-22}) \text{ MeV},$$

$$M_{2} = (4248^{+44+180}_{-29-35}) \text{ MeV}/c^{2},$$

$$\Gamma_{2} = (177^{+54+316}_{-39-61}) \text{ MeV},$$

$$\phi_{Z_{2}^{+}} - \phi_{Z_{1}^{+}} = 1.7^{+0.2}_{-0.3},$$

$$f_{1} = (8.0^{+3.8+9.5}_{-2.2-4.2})\%$$

$$f_{2} = (10.4^{+6.1+51.5}_{-2.3-0.7})\%$$

$$\mathcal{B}(\overline{B}^{0} \to K^{-}Z_{1}^{+}) \times \mathcal{B}(Z_{1}^{+} \to \pi^{+}\chi)$$

$$(2.4^{+1.5+3.7})$$

$$\mathcal{B}(\overline{B}^0 \to K^- Z_2^+) \times \mathcal{B}(Z_2^+ \to \pi^+ \chi_{c1}) =$$

$$(4.0^{+2.3+19.7}_{-0.9-0.5}) \times 10^{-5}.$$

cc-like example: X(3872)

X(3872)→J/ ψ n⁺n⁻ observed in B⁺→X(3872)K⁺ by Belle

Confirmed by BaBar, CDF, D0

20/NeV/c 2 $N = 35.7 \pm 6.8$ DØ Run II Preliminary 110 pb⁻¹ M(ππ) > 500 MeV/c 678 ± 99 y(2S) X(3872) Mass: 3685.67 ± 0.08 (stat) MeV/c ψ(2S) 152M BB o: 3.41 ± 0.09 (stat) MeV/d 2 2000 704 ± 67 Candidates Candidates Mass: 3871.4 ± 0.7 (stat) MeV/ (Eivacl) 4.3 MaV/ 800 1500 600 1000 of Number 400 500 0.7 0.8 3.86 3.92 * Candidates [GeV/c²] M(.I/ w ππ) (GeV) 3.5 3.75 4.25 4.5 4.75 $M(J/\psi \pi^*\pi^-) - M(J/\psi)$ [GeV/c²] M(J/ψπ⁺π⁻

- $m_X = 3871.2 \pm 0.5 \text{ MeV} m_X (m_{D^{*0}} + m_{D^0}) = -0.6 \pm 0.6 \text{MeV} \Gamma < 2.3 \text{MeV}$
- $M(\pi^+\pi^-)$ suggests $X(3872) \rightarrow J/\psi \rho$ (S- or P-wave)
- Other decay modes: $J/\psi\gamma$, $J/\psi\omega$, $D\underline{D}\Pi$ no $X \rightarrow D\underline{D}$ found
- J^{PC}= 1⁺⁺, 2⁻⁺ favored (from angular analysis by Belle/CDF, M(π⁺π⁻), decay modes)

PRL91, 262001 (2003)

What is X(3872) **P**

cc? No obvious assignment

D⁰<u>D</u>*0 molecule?

Braaten et al. hep-ph/0710.5482

m_x≈m_{D*0}+m_{D0} not accidental Favors DDn over J/ψnn **Non-trivial line shape Production in B^o suppressed** in regard to B⁺

Maiani, Polosa et al. 4-quark? PRD 71, 014028 (2005) X_u [uc][<u>uc</u>] X_d [dc][<u>dc</u>] **Different mass of X produced** in B⁰ and B⁺ Finding charged X is critical (no evidence so far)

PRD71, 031501 (2005)

M(J/ψπ⁻π⁰)

BELLE-CONF-0711 PRD77, 111101(2008)

X(3872) in B⁺ and B⁰ decays

- Study of X(3872) \rightarrow J/ $\psi \pi^+\pi^-$ in B⁺ \rightarrow XK⁺ and B⁰ \rightarrow XK⁰_s
- After M_{bc} and ΔE selection:

 $\delta M_X = M(X \text{ from } B^+) - M(X \text{ from } B^0) = 0.22 \pm 0.90 \pm 0.27 \text{ MeV}$

 $\delta M_X = (2.7 \pm 1.6 \pm 0.4) \,\mathrm{MeV}/c^2$

 $R^{0/+} = 0.41 \pm 0.24 \pm 0.05$

• Similar properties of X(3872) from B⁺ and B⁰ decays

$X(3872) \rightarrow D^0 D^{*0} / D^0 D^0 T (?)$

• Belle: $B^+ \rightarrow \underline{D}^0 D^0 \pi^0 K$ (447M B<u>B</u>) BaBar: $B^+ \rightarrow \underline{D}^{*0} D^0 K$ (383MB<u>B</u>)

 $M(X) = 3875.4 \pm 0.7^{+0.4}_{-1.7} \pm 0.9 MeV$

M(X)=3875.1^{+0.7}-0.5 ±0.5MeV Γ=3.0^{+1.9}-1.4 ± 0.9 MeV BR(X→D⁰D⁰π⁰)

- Mass ~4 σ above M(X) for X \rightarrow J/ ψ пп
- Is this X(3872) or are there two states X(3872) and X(3875)?
- More precise measurement of mass/width/line shape needed

Maiani, Polosa et al. hep-ph/0707.3354 X_u [uc][<u>uc</u>]→ <u>D</u>⁰D⁰π⁰ = X(3875) X_d [dc][<u>dc</u>]→ J/Ψπ⁺π⁻ = X(3872) $BR(X \rightarrow J/\psi \pi^+ \pi$

Belle PRL 94, 182002 (2005)

Babar hep-ex/0711.2047 submitted to PRL

- Study of $B \rightarrow KJ/\psi \omega \omega \rightarrow \pi^+\pi^-\pi^0$
- M_{bc}, ΔE and M(π⁺π⁻π⁰) selection

 $BF(B \rightarrow KY) * BF(Y \rightarrow J/\psi\omega) =$ $^{Belle} (7.1 \pm 1.3 \pm 3.1) * 10^{-5}$ $^{Babar} (4.9 \pm 1.0 \pm 0.5) * 10^{-5}$

mass/width discrepancy needs further study

- Y(3940) above D<u>D</u> threshold but has large c<u>c</u> transition
- Candidate for c<u>c</u>-gluon hybrid? (but hybrids predicted >4GeV)
- Re-scattering $D\underline{D}^* \rightarrow J/\psi \omega$?

J. Brodzicka @ PIC08 Double cc production: $e^+e^- \rightarrow J/\psi X_{cc}$

PRL 98, 082001 (2007)

- Factory of 0⁺⁺ and 0⁻⁺ charmonia
- Method: reconstruct J/ψ , study recoil mass igodot $M_{\text{recoil}}(J/\psi) = \sqrt{(E_{\text{cm}}-E_{J/\psi})^2 - p^2_{J/\psi}}$
- **Surprises:**

below DD: cc states with large x-sections O(10-20fb) above DD: new state X(3940)

 $N = 266 \pm 63 (5\sigma)$ M=3936±14 MeV **Γ=39±26 MeV** one state or more?

e

e

BF(X(3940)→J/ψω)<26% @90%CL <u>nlikely that X(3940) is Y(3940)</u> but not excluded

Method has limitation: $\sigma \sim 30$ MeV; recoil system not reconstructed

J/ψ

J. Brodzicka @ PIC08 PRL100, 202001 (2008) $X(3940) \rightarrow D\underline{D}^* and X(4160) \rightarrow D^*\underline{D}^*$

Reconstruct J/ψ and one $D^{(*)}$, associated $D^{(*)}$ seen as peak in $M_{recoil}(J/\psi D^{(*)})$

 Possible assignments: η_c(3S) η_c(4S) (but X masses ~100-150MeV above predictions for η_c's)

PRL 95, 142001 (2005) for 232fb-1

PRL 98, 212001 (2007) for 298fb-1

- ISR gives access to J^{PC}=1⁻⁻ states
- Hard photon emission suppressed, 'compensated' by high luminosity of B-factory

Y(4260)→J/ψππ M=4259 ± 8⁺²₋₆ MeV Γ=88 ± 23 ⁺⁶₋₄ MeV

Y(4360)→ψ′ππ M=4324 ± 24 MeV Γ =172 ± 33 MeV

Y family through ISR

PRD74, 091104 (2006) PRL 96, 162003 (2006) for 13pb⁻¹@4.26GeV

PRL 99, 182004 (2007)

- Study of $e^+e^- \rightarrow J/\psi \pi^+\pi^- \gamma_{ISR}$ (548 fb⁻¹)
- $J/\psi \rightarrow ee$, $\mu\mu + \pi\pi$; no extra tracks
- ISR photon is not detected
- Missing mass used to identify process
- Fit to M(J/ψππ) with two coherent Breit-Wigners
- Y(4260) confirmed
- Y(4008) resonance? Re-scattering from DD*? Coupled-channel effect?

Parameters	Solution I	Solution II		
M(R1)	$4008 \pm 40^{+114}_{-28}$			
$\Gamma_{\rm tot}(R1)$	$226 \pm 44 \pm 87$			
$\mathcal{B}\cdot \Gamma_{e^+e^-}(R1)$	$5.0 \pm 1.4^{+6.1}_{-0.9}$	$12.4 \pm 2.4^{+14.8}_{-1.1}$		
M(R2)	$4247 \pm 12^{+17}_{-32}$			
$\Gamma_{\rm tot}(R2)$	$108 \pm$	19 ± 10		
$\mathcal{B}\cdot \Gamma_{e^+e^-}(R2)$	$6.0\pm1.2^{+4.7}_{-0.5}$	$20.6 \pm 2.3^{+9.1}_{-1.7}$		
ϕ	$12\pm29^{+7}_{-98}$	$-111\pm7^{+28}_{-31}$		

$Y \rightarrow J/\psi \pi \pi V i a ISR$

$Y \rightarrow \psi' \pi \pi via ISR$

PRL 99, 142002 (2007)

- Study of e⁺e⁻→ψ'π⁺π⁻ γ_{ISR} (673 fb⁻¹)
- ψ'→J/ψпп, J/ψ→ee, μμ + пп
- no additional tracks allowed
- γ_{ISR} not detected
- Two significant peaks in M(ψ'ππ) : one close to Babar's Y(4360) but narrower

• $M(\psi'\pi\pi)$ fitted with two coherent Breit-Wigners

1⁻⁻Y states via ISR

- Y states above D<u>D</u> threshold but don't match well the peaks in D^(*)D^(*) x-sections
- Large widths for ψππ transition: unlike for conventional cc
- No c<u>c</u> assignments available in this mass region (too many 1⁻ states observed)

Other options:

- Charm-meson threshold effects
- D<u>D</u>₁ or D^{*}<u>D</u>₀ molecules
- cq<u>cq</u> tetraquarks
- ccg hybrid
 DD₁ mode should dominate
- Coupled-channel effects

Exclusive D^(*)D^(*) x-sections with ISR

PRD 77, 011103 (2008) for 673fb⁻¹

PRL 98, 092001 (2007) for 548fb⁻¹

PRL 100, 062001 (2008) for 673fb⁻¹

- D<u>D</u>*, D*<u>D</u>* using partial reconstruction; D<u>D</u>, D<u>D</u>π: fully recon.
- Difficult interpretation in terms of resonances (many maxima/minima, model dependent coupled-channel and threshold effects...)

Hadronic x-sections

- From CLEO: scan at 3.97-4.26GeV in 12 points
- Total hadronic x-section above DD from BES

cc (-like) state of art

- We have added a few new states...
- Are they conventional cc? Do we understand them?

X(2175) strange analog of Y(4260)P

X(2175)→ φ f₀(980), φη (confirmed by BESII)

Is there any <u>bb</u> analog of Y(4260)?

PRL100, 112001(2008)

Hou, PRD74, 017504 (2006)

- If bb follows the pattern in cc , Y_b should exist: $Y_b \rightarrow Y(nS) \pi$
- Use Y(5S) data: 21.7 fb⁻¹ collected at \sqrt{s} =10869MeV
- Study of dipion transitions: $Y(mS) \rightarrow Y(nS)\pi^{+}\pi^{-}m > n Y(nS) \rightarrow \mu^{+}\mu^{-}n = 1,2,3$ Identified using: $\Delta M = M(Y(mS)) - M(Y(nS)) = M(\mu\mu\pi\pi) - M(\mu\mu)$

Large Y(5S) \rightarrow Y(nS) TT Do we see Y_b?

Process	Xsec(pb)	BF(%)	Г (MeV) 🖌
"Y(5S)"→Y(1S)ππ	1.61±0.10±0.12	0.53±0.03±0.05	0.59±0.04±0.09
"Y(5S)"→Y(2S)ππ	2.35±0.19±0.32	0.78±0.06±0.11	0.85±0.07±0.16
"Y(5S)"→Y(3S)ππ	1.44 ^{+0.55} _{-0.45} ±0.19	$0.48^{+0.18}_{-0.15}\pm 0.07$	0.52 ^{+0.20} _{-0.17} ±0.10

assuming Y(5S)@10.87GeV σ =0.302±0.015nb

Large Y(5S)→Y(nS)пп partial widths! For other bb: O(keV)
 Do not agree with hypothesis for pure bb state

bb	Γ(total)	<i>Γ(</i> Y(1S)ππ)	CC	Γ(total)	Γ(J/ψππ)
Y(2S)	32 KeV	6.0 KeV	ψ(2S)	337 KeV	107 KeV
Y(3S)	20 KeV	0.9 KeV	$\psi(3770)$	23 MeV	44 KeV
Y(4S)	20.5 MeV	1.8 KeV	$\psi(4040)$	80 MeV	<320 KeV @90%
"Y(5S)"	110 MeV	~0.5 MeV!!	$\psi(4160)$	103 MeV	<309 KeV @90%
			Y(4260)	83 MeV	<i>O</i> (>MeV)

- Is it Y_b? Mixture of Y(5S) and Y_b?
- Energy scan around Y(5S) (December 2007)
 ~7.9fb⁻¹ at 6 energy points. Results coming soon!

Summary

- New charmonium spectroscopy @4GeV
- Candidates for exotic hadrons observed: $Z^+(4430) \rightarrow \psi' \Pi^+ \quad Z_{1,2} \rightarrow \chi_{c1} \Pi^+$
- Many other states await understanding X(3872) Y(3940) Y-family...
- XYZ spectroscopy also in s and b quark sectors?