Antimatter and Dark Matter search in Space with AMS-02

้เทรท่

Francesca Spada N and Sapienza University, Rome for the AMS Collaboration

PIC08 - Perugia, Italy - June 28, 2008

Precision cosmology...

Large scale structures (SSDS, ...) Ω_m = 0.25 - 0.3

Cosmic MW backgoround(WMAP, BOOMERanG)Flat universe ($\Omega_{tot} = 1$) $\Omega_m \approx 0.25 \rightarrow \Omega_\lambda > 0$

Type Ia SuperNovae(HUBBLE)Accelerated expansion $\Omega_{\Lambda} > 0$

2/24

Precision cosmology...

"Standard" cosmological model describes a Universe

- flat, homogeneous and isotropic on large scale
- composed of:

F. Spada – Antimatter and Dark matter with AMS-02

	Ordinary matter and radiation Cold Dark matter				4.4% 23 %		
	Dark energy	⁹⁶ 7			73	%	58
	Antimatter				< 1 matt	0 ⁻⁶ er	-
	+						
			1.00				

Dark Energy

V

Atoms 4%

Precision cosmology in the spectrum of Cosmic Rays

The presence of **dark matter annihilation products** provides a modification of the **Cosmic Rays spectrum** provided one has enough sensitivity to detect it

AMS-02: a large acceptance magnetic spectrometer in space

Large acceptance & long exposure time -> high statistics Space -> negligible environmental background

4/24

The AMS-02 Collaboration

F. Spada – Antimatter and Dark matter with AMS-02

6/24

Transition Radiation Detector (TRD)

Fleece radiator + straw tubes (Xe:CO₂) e/p separation > 10² up to 300 GeV 3D tracking

Time of Flight (TOF)

2+2 layers of scintillators, Δt ~160 ps Main Trigger Z separation β with few % precision

Superconducting Magnet

Coils cooled to 1.8 K by 2.5 m^3 of superfluid He Contained dipolar field of BL² = 0.85 Tm²

First Superconducting Magnet ever operating in Space!

Silicon Tracker

8 layers double sided silicon microstrip detector Z separation R up to 2-3 TeV $\sigma_R < 2\%$ for R < 10 GeV

Ring Imaging Cherenkov (RICH)

Electromagnetic Calorimeter

9 superlayers of Lead + Scint. Fibers Standalone Trigger e^{\pm} , γ detection σ_E <3% for E > 10 GeV e/p separation > 10³ 3D imaging

Origin of Dark matter

Dark Energy 73%

Several models provide CDM candidates (WIMPS)

R-parity conserving Supersymmetric models Lightest SUSY particle: neutralino x

Extra-dimensional models Lightest Kaluza-Klein particle: n=1 mode of U(1) gauge boson B⁽¹⁾

May be discovered at LCH?

- Difficult to correlate with CDM
- Part of the parameter space not accessible

Astrophysical detection of relic WIMPs is needed

Indirect search of CDM = detection of WIMP annihilation products

10

10 10

10

sr GeV)-1

χχ annihilations can produce

Neutrinos

- direct production
- W decay
- Heavy Quarks decay
- charged Pions decay

e+

- direct production (strongly suppressed): E_e = m_X
- W decay
- Heavy Quarks decay
- Leptons and charged Pions decay

Photons

- direct production : $E_{\gamma} = m_X$
- decay of neutral Pions

р

- indirect production dominant
- Hadronization : $E_h << m_X$

Antideuterons

- no direct production
- Hadronization + coalescence: $E_h << m_X$

hannels accessible to AMS

Dark matter search: Positrons

An excess in the 10 GeV region has been reported by HEAT based on a $\sim 10^2$ positrons sample AMS will collect about 10^5 positrons in the 10 < E < 50 GeV region, in 3 years Main background sources: rel. abundance rejection factor $10^2 - 10^3$ [TRD] x 10^3 [ECAL] $\ge 10^5$ protons $\sim 10^4$ electrons 10⁴ [TOF+Tracker] ~ 10 Rejection MS 02 IS 02 р e+ TRD Channels) 10⁵ 10 10² Energy (GeV)

F. Spada – Antimatter and Dark matter with AMS-02

16/24

Dark matter search: Positrons

Example of **neutralino annihiliation signals** observed by AMS in the **positron spectrum** with the boost factors* that fit the HEAT data and motivated with a inhomogenous dark matter density (*clumpiness*)

Dark matter search: unique feature of AMS-02

F. Spada – Antimatter and Dark matter with AMS-02

19/24

Origin of Antimatter

- In the Big Bang theory **matter** and **antimatter** are created with **equal abundances**
- The disappearance of antimatter requires **barion number** violation and **another source of CP violation**

Antiparticles are produced in collisions between high energy particles and are observed in the Cosmic Rays $\varphi(e^+)/\varphi(e^-) \sim 10^{-1}$ at 10 GeV

φ(p) / φ(p) ~ 10⁻⁵ at 10 GeV

An **antihelium nucleus** has very low probability of being produced in collisions: $n(He)/n(He) \approx 10^{-6} - 10^{-8}$

its detection indicates the existence of an **antimatter area** somewhere in the Universe

Expected limits on anti-He

AMS will collect in three years 2x10⁹ nuclei with energies up to 2 TeV Sensitivity up to anti-Iron

The limit put by precursor flight AMS-01 will be increased of a factor 10³

Sensitivity: if no antinucleus is observed -> there is no antimatter to the edge of the observable universe (~ 1000 Mpc)

Conclusions

• The AMS experiment, during its 3 year mission, will be able to measure spectra of particles and nuclei up to Iron in the GeV-TeV range

Dark matter indirect search:

- measure **simultaneously** and with unprecedented precision the rates and spectra of *positrons*, *photons*, *antiprotons*, *antideuteron*
 - confirm or disprove with high accuracy the excess in HEAT positron data in the few GeV region
 - a γ signal from the galactic center will be visible in AMS in the case of cuspy halo profile or extra enhancements
 - very accurate measurement of the high energy tail of the antiproton spectrum
- Several models for Dark Matter candidates can be constrained by the new AMS data

Antimatter search:

- If no antinucleus is observed the hypothesis of *barion asymmetry* will be strongly favoured as no antimatter areas are present in the observable universe
- Accurate study of CR composition and energy spectrum (H, He, B/C, ⁹Be/¹⁰Be)
- Search of new types of matter (strangelets)

The integration of the detector is almost completed In 2009, AMS-02 will be ready at NASA KSC for the launch to the ISS

