

Outline

- LHCb detector
- First days of data taking
- Beauty cross section
- Summary and Outlook

LHCb @ LHC

liadi

LHCb

b

b

[rad]

ATLAS

CERN

b

CMS

A Large Hadron Collider Beauty Experiment for Precision Measurements of CP-Violation and Rare Decays

The LHCb Detector

The LHCb Detector

IH

The LHCb Detector

27 June 2008 Installation of major structures is complete

A walk through the LHCb spectrometer...

B-Vertex Measurement

- $^{\sim}$ 5 μm hit resolution
- 2 \rightarrow 30 μ m IP resolution

Wiedner at PIC2008 Perugia

B-Vertex Measurement

Momentum and Mass measurement

Momentum and Mass measurement

Momentum and Mass measurement

Particle Identification

RICH: K/ π identification using Cherenkov light emission angle

Particle Identification

RICH: K/ π identification using Cherenkov light emission angle

RICH: K/ π identification; eg. distinguish D_s π and D_sK events.

LHCb calorimeters

LHCb calorimeters

LHCb muon detection

Muon system:

Level 0 trigger: High Pt muons

•Muon ID

27 June 2008

LHCb muon detection

Muon system:

- Level 0 trigger: High Pt muons
- •Muon ID

27 June 2008

LHCb trigger

Cosmic muon event

Initial minimum bias run

- only 4 filled bunches at L = 1.1×10^{29} cm⁻²s⁻¹
- 2 kHz minimum bias to disk
- 300 Hz non-empty minimum bias events to disk
- 10⁸ events in approx. 100 hours of running

Filling scheme	for nex	xt step	(2008)
----------------	---------	---------	--------

F	Parameters		Rates in 8	
k _b N		beta*	Luminosity	Events/
	(m)	(cm ⁻² s ⁻¹)	crossing	
68	4 10¹⁰	10	2.0E+30	0.15
68	4 10¹⁰	5	4.9E+30	0.3
68	9 10¹⁰	10	9.6E+30	0.76
68	9 10 ¹⁰	5	2.4E+31	1.6

Beauty x-section

- Requirement: working MUON-system, Main Tracker and VeLo
- measure J/Ψ -production cross sections
- disentangle fractions of prompt and detached J/Ψs
- relate non promt J/Ψ yield to bb cross sections

Summary

- The LHCb detector is ready to take data in 2008:
 - Good decay time resolution to resolve ${\sf B}_{\rm s}$ oscillations
 - Good mass resolution to efficiently suppress background
 - Excellent particle identification for K- π separation
 - Efficient trigger for many B-decay topologies
- Inclusive "low p_{T} " physics from day one
- Determination of the b-cross section in first months

Outlook

- Physics program in 2009:
 - Very interesting results with first 0.5 fb⁻¹ of data:
 - $B_s \rightarrow J/\psi \phi$ 2 β_s measurement with ~0.05 precision (S.M. exp. 0.0368 0.0017)
 - $B_s \rightarrow \mu\mu$ BR limit down to SM value (3.35 0.32) x10⁻⁹

 $B_d \rightarrow K^{0^*}\mu\mu$ ~1800 events, overtaking B-Factories statistics

Core physics program @ 2fb⁻¹ per year

<u>CP Violation - 1 year (2 fb⁻¹)</u>

- γ from trees: 5° 10°
- γ from penguins: $\approx 10^{\circ}$
- B_s mixing phase: 0.023
- β_{s}^{eff} from penguins: 0.11

Rare Decays - 1 year (2 fb⁻¹)

•
$$B_d \rightarrow K^{0*} \mu \mu s_0 : 0.5 \text{ GeV}^2$$

•
$$B_s \rightarrow \phi \gamma \quad A_{dir} , A_{mix} : 0.11$$

 $A_{\Lambda} : 0.22$

 A_{Λ}

P B_s→µµ BR.: 6 x 10⁻⁹ at 5
$$\sigma$$

The End