B decay and CP violation CKM angles and sides

PIC 2008

Perugia, Italy 25-28 June, 2008 Marc Verderi LLR Ecole polytechnique / IN2P3- CNRS

For the B Factories

Outline

- The CKM matrix and Unitarity Triangle
- The BABAR and BELLE dectectors
- Side measurements
 - $-B_d$ and B_s mixing
 - V_{cb} inclusive & exclusive
 - V_{ub} inclusive & exclusive
 - No time for Radiative decays !
- CKM angle measurements
 - $-\beta/\phi_1$
 - α / ϕ_2
 - γ / ϕ_3

The CKM matrix

quark mixing matrix of charged current interactions

CKM matrix definition:

- Unitary matrix
- 3 real parameters + 1 complex phase
- Wolfenstein parameterization:

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

- the 4 parameters are $\lambda \approx 0.22$, $A \approx 0.83$, ρ and η .
- matrix hierarchy reflected by development in power of λ .
- in this representation CKM angles are carried by $V_{td} = |V_{td}| e^{-i\beta}$, $V_{ub} = |V_{ub}| e^{-i\gamma}$, with $\alpha = \pi \beta \gamma$

zes

Only source of *CP* in *SM*

The Unitarity Triangle

• Unitary of
$$V_{CKM} \rightarrow V^{\dagger}_{CKM}V_{CKM} = 1 \rightarrow V_{ud}V^{*}_{ub} + V_{cd}V^{*}_{cb} + V_{td}V^{*}_{tb} = 0$$

- unitary triangle of *B* sector
- − all terms of the order $\lambda^3 \rightarrow CPV$ angles sizeable

 $\overline{\rho}$ and $\overline{\eta}$ are slight redefinition of ρ and η to provide a well defined expansion in λ of V_{CKM} and its unitarity of to all orders in λ .

- Sides of the triangles measurable by non *CP* violating processes
 - eg : semileptonic *B* decays, $B^0\overline{B}^0$ mixing frequency
- Angles measured with CP violating processes
 - If α or β : $B^0\overline{B}^0$ mixing is needed ingredient to access the phase of V_{td}
 - If γ charged *B* decays can allow access as well

Three types of CP violation

I should make clear that :

```
At \Delta t = 0 the B meson is a pure B^0 or \overline{B^0}
```

It decays at Δt in a interference state

On an experimental point of view, the detector

has to measure:

→ B CP flavor (B^0 or \overline{B}^0) at $\Delta t = 0$

→ The decay time Δt of the *B* meson

• Time dependent *CP* asymmetry:

$$A_{f_{CP}}(\Delta t) = \frac{N(B^{0}(\Delta t) \rightarrow f_{CP}) - N(\overline{B}^{0}(\Delta t) \rightarrow f_{CP})}{N(B^{0}(\Delta t) \rightarrow f_{CP}) + N(\overline{B}^{0}(\Delta t) \rightarrow f_{CP})}$$
$$= S_{f_{CP}} \cdot \sin \Delta m_{B^{0}} \Delta t - C_{f_{CP}} \cdot \cos \Delta m_{B^{0}} \Delta t$$

The BABAR and BELLE detectors

The BELLE detector

The BABAR detector

Side measurements

$|V_{td}|/|V_{ts}|$ from $\Delta m_s/\Delta m_d$

• B_d and B_s oscillation frequency controlled by mass difference:

$$\Delta m_q = \frac{G_F^2 m_W^2 \eta S(x_t^2)}{6\pi^2} m_{B_q} f_{B_q}^2 B_{B_q} |V_{tq}^* V_{tb}|^2$$

 Form factor and B-parameters from Lattice calculations known to ~15%
→ uncertainty on V_{td} • Ratio better controlled (hep-lat/0510113):

$$\xi^{2} = \frac{f_{d}^{2}B_{d}}{f_{s}^{2}B_{s}} = 1.210 + 0.047 - 0.035 \quad (\sigma \sim 4\%)$$

$|V_{td}|/|V_{ts}|$ from $\Delta m_s/\Delta m_d$

• B_d and B_s oscillation frequency controlled by mass difference:

$$\Delta m_q = \frac{G_F^2 m_W^2 \eta S(x_t^2)}{6\pi^2} m_{B_q} f_{B_q}^2 B_{B_q} |V_{tq}^* V_{tb}|^2$$

• Form factor and B-parameters from Lattice calculations known to ~15% \rightarrow uncertainty on V_{td}

• Ratio better controlled (hep-lat/0510113):

$$\xi^{2} = \frac{f_{d}^{2}B_{d}}{f_{s}^{2}B_{s}} = 1.210 + 0.047 - 0.035 \quad (\sigma \sim 4\%)$$

$$|V_{td}|/|V_{ts}|$$
 from $\Delta m_s/\Delta m_d$

• Together with $\Delta m_d = 0.505 \pm 0.005$ (PDG) and m(B_d)/m(B_s)=0.98320 (PDG):

$$\left|\frac{V_{td}}{V_{ts}}\right| = 0.2060 \pm 0.0007 \,(\exp)^{+0.0081}_{-0.0060} \,(\text{theo})$$

Semileptonic decays

from partons to hadrons

- Quark decay is a tree level, short distance process.
- Decay properties depend directly on $|V_{c(u)b}|$ and m_b in perturbative regime (α_s^n expansion).
- But quarks are bound by soft gluons...
- *Non-perturbative* long distance interactions of *b* quark with light quarks complicate the situation.

• Two different approaches are used:

- Inclusive : extrapolate by theory phase space measured to the full phase space
- Exclusive : needs prediction of form factor by theory

Experimental methods

- Exclusive or inclusive reconstruction are used on the signal side
- In addition, on the other *B* ("tag") side:

June 27, 2008

Coping with non-perturbative interactions in V_{cb} extraction (inclusive analysis)

Total decay rate:

- Non perturbative parameters *need to be measured*
 - they depend on the expansion, which depends on the m_b definition
- Can be extracted from the moments of lepton energy and hadronic mass spectra: (integration)

$$\left\langle E_l^n \right\rangle_{E > E_{cut}} = \frac{1}{\Gamma_{c(u)}} \int \left(E_l - \left\langle E_l \right\rangle \right)^n \frac{\mathrm{d}\Gamma_{c(u)}}{\mathrm{d}E_l} \mathrm{d}E_l$$
$$\left\langle m_X \right\rangle_{E > E_{cut}} = \frac{1}{\Gamma_{c(u)}} \int m_X^n \frac{\mathrm{d}\Gamma_{c(u)}}{\mathrm{d}m_X} \mathrm{d}m_X$$

Calculations are available in "kinetic" (Benson & al., Nucl. Phys. B665:367) and "**1S**" (Bauer & al., PRD **70**, 094017 (2004)) schemes. They are based on Heavy Quark Expansion (HQE) and Operator Product Expansion (OPE).

 More than 60 measured moments available from DELPHI, CLEO, BABAR, BELLE, CDF

Moments in semileptonic decays

Global OPE fit – Kinetic Scheme

BR measurements of $B \rightarrow D^{**}I_V$

Measurement to control D^{**} background in V_{cb} analyses:

HQET predicts the rate of broad D*₀ ~10 times smaller than narrow D*2

Belle measure comparable branchings fractions

$\mathcal{B}(\text{mode}) \equiv \mathcal{B}(B \to D^{**} \ell \nu) \times \mathcal{B}(D^{**} \to D^{(*)} \pi^+)$						
$D\pi$ invariant mass study						
Mode	Yield	<i>B</i> , %	Signif.			
$B^+ \to D_0^{*0} \ell^+ \nu$	102 ± 19	$0.24 \pm 0.04 \pm 0.06$	5.4			
$B^+ \to \bar{D}_2^{*0} \ell^+ \nu$	94 ± 13	$0.22 \pm 0.03 \pm 0.04$	8.0			
$B^0 \to D_0^{*-} \ell^+ \nu$	61 ± 22	$0.20 \pm 0.07 \pm 0.05$	2.6			
$B^0 \to D_2^{*-} \ell^+ \nu$	68 ± 13	$0.22 \pm 0.04 \pm 0.04$	5.5			
$D^*\pi$ invariant mass study						
Mode	Yield	B, %	Signif.			
$B^+ \to \bar{D}_1^{'0} \ell^+ \nu$	-5 ± 11	< 0.07 @ 90% C.L.				
$B^+ \to \bar{D}_1^0 \ell^+ \nu$	81 ± 13	$0.42 \pm 0.07 \pm 0.07$	6.7			
$B^+ \to \bar{D}_2^{*0} \ell^+ \nu$	35 ± 11	$0.18 \pm 0.06 \pm 0.03$	3.2			
$B^0 \to D_1^{\prime -} \ell^+ \nu$	4 ± 8	< 0.5 @ 90% C.L.				
$B^0 \to D_1^- \ell^+ \nu$	20 ± 7	$0.54 \pm 0.19 \pm 0.09$	2.9			
$B^0 \rightarrow D^{*-}_{*} \ell^+ \nu$	1+6	< 0.3 @ 90% C.L.				

arXiv:0711.3252

BABAR confirms large BR for D_0^* , and finds large BR for D_1^{\prime} (6 σ difference will BELLE !)

June 27, 2008

Marc Verderi, LLR Ecole polytechnique / IN2P3- CNRS PIC 2008

V_{cb} and HQE parameters

- More results from global fits in the kinetic and 1S schemes are available. Recent averages performed by the HFAG
- A pattern is present: results with $b \rightarrow c \ell v$ and $b \rightarrow s \gamma$ moments differ from results with $b \rightarrow c \ell v$ moments only (except in hep-ex/0611047, but larger errors).
- HFAG results for Lepton Photon:

Main physics background B→D^{**}Iv

$F(1)|V_{cb}|$

F(1)|V_{cb}|=(35.9±0.6)10⁻³ ρ_A^2 =1.23±0.05

From F(1)=0.919±0.033:

error is dominated by the lattice calculation

 $B \rightarrow D^0 I_{\nu}$ has a small theoretical error but it's more difficult experimentally and very few measurement

HFAG average uses R_1 , R_2 from BaBar this decrease $F(1)|V_{cb}|$ PRL 77, 03200

V_{ub} from inclusive semileptonic decays

June 27, 2008

Marc Verderi, LLR Ecole polytechnique / IN2P3- CNRS PIC 2008

Inclusive V_{ub} with hadronic tag

Marc Verderi, LLR Ecole polytechnique / IN2P3- CNRS PIC 2008

8	Hadronic tag: results					
Kinematic region	N	$\Delta \mathcal{B} (B \rightarrow X_u h) 10^{-3}$ (stat. syst. theo.)	V _{ub} 10 ⁻³ (stat. syst. theo.)	theoretical framework	largest	
$m_X < 1.55 \text{ GeV/c}^2$	803 <u>+</u> 60	1.18 ± 0.09 ± 0.07 ± 0.01	4.27 ± 0.16 ± 0.13 ± 0.30 4.56 ± 0.17 ± 0.14 ± 0.32	BLNP DGE	uncertainty: theoretical error 6-7.5%	
P+ < 0.66 GeV/c	633 <u>+</u> 63	0.95 ± 0.10 ± 0.08 ± 0.01	3.88 ± 0.19 ± 0.16 ± 0.28 3.99 ± 0.20 ± 0.16 ± 0.24	BLNP DGE		
m _X < 1.7 GeV/c² q² > 8 GeV²/c⁴	562 <u>+</u> 55	0.81 ± 0.08 ± 0.07 ± 0.02	4.57 ± 0.22 ± 0.19 ± 0.30 4.64 ± 0.23 ± 0.19 ± 0.25 4.93 ± 0.24 ± 0.20 ± 0.36	BLNP DGE BLL		

				How predictive is theory?		
	Φ_1/Φ_2	Data $(\Delta \mathcal{B})$	Γ_{thy} (BLNP)	double ratio $\Gamma_{thy}/\Delta {\cal B}$	$\int \Delta {\cal B}(ar B o Z)$	
	$M_X/M_x, q^2$	1.46 <u>+</u> 0.13	1.67 <u>+</u> 0.05	1.14 ± 0.11	$ V_{ub} = \sqrt{\frac{\tau_B \cdot \Gamma_{tl}}{\tau_B \cdot \Gamma_{tl}}}$	
	P_+/M_X	0.81 <u>+</u> 0.07	0.98 <u>+</u> 0.03	1.21 ± 0.11	$\frac{\Delta \mathcal{B}(\Phi_1)}{\Delta \mathcal{B}(\Phi_2)} = \frac{\Gamma thy}{\Gamma_{thy}} \left(\frac{\Delta \mathcal{B}(\Phi_2)}{\Phi_1} \right)$	
	$P_+/M_X, q^2$	1.18 ± 0.14	1.63 ± 0.05	1.38 ± 0.17		

~~) A.

$ V_{ub} = \sqrt{\Delta \over -}$	$\frac{\mathcal{B}(\bar{B} \to X_u \ell \bar{\nu})}{\tau_B \cdot \Gamma_{thy}}$
$\frac{\Delta \mathcal{B}(\Phi_1)}{\Delta \mathcal{B}(\Phi_2)} =$	$=\frac{\Gamma_{thy}(\Phi_1)}{\Gamma_{thy}(\Phi_2)}$

Weak Annhilation

arXiv: 0708.1753

 \cdot introduces differences between B^{o} and B^{t} decays

small contribution: 3% of the total decay rate

. But would sit in the high q^2 region, where V_{ub} meas. is performed. \cdot compare B^o partial rate to the charge averaged rate

in region where WA contribution is greater (high q^2 and large p_1)

· Study charmless semileptonic decays on recoil of partial reconstructed $B^0 \rightarrow D^{*+} \downarrow^- v$

V_{ub} measurement with exclusive decays

Experimentally clean

$$\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} = \frac{G_{\rm F}^2}{24\pi^2} |V_{ub}|^2 p_{\pi}^3 |f_+(q^2)|^2$$

Currently only $B \rightarrow \pi |v|$ for $|V_{ub}|$ - one dominant form factor (q² shape and normalization needed)

- Form factor calculations from various methods:
 - "unquenched" lattice QCD (HPQCD, Fermilab, ...)
 - Light-Cone Sum Rules (Ball & Zwicky, ...)
 - quark models (ISGW2, ...)

FF dominates |Vub| error

ISGW2 quark-model incompatible (Prob<0.06%).

E. Barberio

30

V_{ub} measurement with exclusive decays B $\rightarrow \pi Iv$: untagged method

BaBar 227MBB

Phys. Rev. Lett. 98:091801 (2007)

|V_{ub}|: inclusive vs exclusive

Marc Verderi, LLR Ecole polytechnique / IN2P3- CNRS PIC 2008

V_{ub} : inclusive versus exclusive

 small "tension" with exclusive for some calculations

 measurements still dominated by theory great effort to improve: measurements can help as well

error on |V_{ub}|~ 9%; expected to push
down to 5%

CKM angle measurements

Measurement of β

• The measurement of β is to "collect" the phase of the B^0B^0 mixing:

Marc Verderi, LLR Ecole polytechnique / IN2P3- CNRS PIC 2008

$sin(2\beta)$ in b \rightarrow c $\overline{c}s$ decays : "golden modes"

b \rightarrow ccd decays : $B^0 \rightarrow J/\Psi \pi^0$

- Penguins with different phases could contribute
- If not, SM predicts S=-sin2β, C=0
- Can constrain penguin pollution in $J/\Psi K^0$, by SU(3)

(see PRL 95, 221804 (2005) : uncertainties may be larger than considered)

PRD(RC) 77, 071101 (2008) 535M BB

 $C = -0.20 \pm 0.19 \pm 0.03$ $\mathsf{BF} = (1.69 \pm 0.14 \pm 0.07)^* 10^{-5}$

S is 2.4 σ from 0

$sin2\beta$ from b \rightarrow ccs, ccd decays: summary

 $sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff}) \underset{\text{PRELIMINARY}}{\text{HFAG}}$

F. Martínez-Vidal, Unitarity Triangle angles at BaBar

26

BEACH 2008, 22-28 June, 2008

Measuring α : penguin pollution

How to obtain α from α_{eff} ? \rightarrow need additional information

Marc Verderi, LLR Ecole polytechnique / IN2P3- CNRS PIC 2008

Coping with penguins

Gronau & London analysis:

- According to SU(2):
 - Tree amplitude is I=0 and I=2
 - Gluonic penguin is pure I=0
 - $B^+ \rightarrow h^+ h^0$ is pure I=2 (neglecting EW penguins) so : $A^{+0} = \overline{A}^{-0}$
- Decay amplitudes are related by:

$$A^{+0} = \frac{1}{\sqrt{2}}A^{+-} + A^{00}; \overline{A}^{-0} = \frac{1}{\sqrt{2}}\overline{A}^{+-} + \overline{A}^{00}$$

– Allows estimation of penguininduced shift in α :

$$\kappa^{+-} = 2(\alpha_{eff} - \alpha)$$

• But 4-fold ambiguity

$$\kappa^{+-} = \pm(\theta \pm \theta)$$

- And 2-fold ambiguity in 2α
- Measurement of 6 amplitudes needed, on 6 tagged samples
 - time dependent analyses needed for B⁰ amplitudes.
- Grossman/Quinn bound:

$$\sin^2(\alpha_{eff} - \alpha) \le \frac{BF(B \to h^0 h^0)}{BF(B^{\pm} \to h^{\pm} h^0)}$$

- don't need to tag B flavor
- − useful if BF($B \rightarrow h^0 h^0$) is small

CP asymmetries in $B^0 \rightarrow \pi^+ \pi^-$

α from $B \rightarrow \pi \pi$

CP asymmetries in $B^0 \rightarrow \rho^+ \rho^-$

Marc Verderi, LLR Ecole polytechnique / IN2P3- CNRS PIC 2008

$B^0 \rightarrow \rho^0 \rho^0$ and isospin analysis

- First measurement of time dependent asymmetries in $\rho^{0}\rho^{0}$
 - in contrast with $\pi^0 \pi^0, \rho^0 \rho^0$ vertex can be reconstructed \rightarrow TD possible
 - allows measurement of $S_L^{00} \rightarrow$ full isospin analysis

Dalitz analysis of $B^0 \rightarrow (\rho \pi)^0 \rightarrow \pi^+ \pi^- \pi^0$

- Dominant $B^0 \rightarrow \rho^+ \pi^-$ is not a **CP eigenstate**
- 5 amplitudes involved : $B^0 \rightarrow \rho^+ \pi^-$, $\rho^- \pi^+$, $\rho^0 \pi^0$ and $B^+ \rightarrow \rho^+ \pi^0$, $\rho^0 \pi^+$
 - → Isospin pentagon !
- Better approach → TD Dalitz analysis assuming isospin symmetry:

A. Snyder and H. Quinn, PRD **48**, 2139 (1993)

Interferences at equal masses provides information on **strong phases** between resonances

Dalitz analysis of $B^0 \rightarrow (\rho \pi)^0 \rightarrow \pi^+ \pi^- \pi^0$

- Decay $B^0 \rightarrow a_1 \pi$ has same quark diagram than $B \rightarrow \pi \pi, \rho \pi, \dots$
 - and is similar to $B \rightarrow \rho \pi$: not a CP eigenstate, quasi-2 body approach
- High branching fraction:

 $B^0 \rightarrow a_1 \pi$

 $BR=(33.2 \pm 3.2 \pm 3.2) \times 10^{-6}$

BR=(29.8 ± 3.2 ± 4.6)×10⁻⁶

hep-ex 0706.3279

- SU(3) related modes $(\pi \leftrightarrow K, a_1 \leftrightarrow K_1)$ to constrain $\alpha \cdot \alpha_{eff}$:
 - B→a₁K : PRL **100**, 051802 (2008)
 - $B \rightarrow K_1 \pi$: ongoing

Marc Verderi, LLR Ecole polytechnique / IN2P3- CNRS PIC 2008

Combined constraints on α

• Frequentist versus Bayesian treatment of constraints

- Excluded regions are common.
- Situation should clarify with more data.

Measurement of γ : methods overview

- Measure relative phase (γ) between b \rightarrow c \overline{u} s and b \rightarrow u \overline{c} s decay processes
- For final states common to D⁰ and $\overline{D}^0 \Rightarrow$ interferences $\Rightarrow \gamma$ accessible

Updated $B^+ \rightarrow D^*K^+$ and $B^+ \rightarrow DK$ GLW

Results consistent with $\gamma = (67.6 \pm 4.0)^{\circ}$ from SM fit

Updated $B^+ \rightarrow DK^+$ ADS

$$R_{ADS} \equiv \frac{\Gamma(B \to D_{\text{supp.}}K)}{\Gamma(B \to D_{\text{fav.}}K)} = r_D^2 + r_B^2 + 2r_B r_D \cos \gamma \cos \delta$$
$$A_{ADS} \equiv \frac{\Gamma(B^- \to D_{\text{supp.}}K^-) - \Gamma(B^+ \to D_{\text{supp.}}K^+)}{\Gamma(B^- \to D_{\text{supp.}}K^-) - \Gamma(B^+ \to D_{\text{supp.}}K^+)}$$
$$= 2r_B r_D \sin \gamma \sin \delta / R_{ADS}$$

 $\delta = \delta_B + \delta_D$: relative strong phases for B and D decays

arXiv:0804.2063, submitted to PRD(RC) 657M BB

No significant signal observed in the suppressed mode:

r_B<0.19 @ 90% CL

Marc Verderi, LLR Ecole polytechnique / IN2P3- CNRS PIC 2008 $B^+ \rightarrow D^{(*)}K^+$ Dalitz

- The idea in pictures: $D^0 \to K_S^0 \pi \pi$ $\overline{D}^0 \to K^0_S \pi \pi$ m²(K_sπ⁺ +**r**_Be^{iδ}Be^{-iγ} $A(B^{-})=|A(B\rightarrow D^{0}K)|\times$ + $D^0 \rightarrow K_s KK, \pi^0 \pi \pi$ $m^2(K_s\pi^-)$ m²(K_sπ⁻) $A_{-}(m_{-}^{2}, m_{+}^{2}) = \left| A(B^{-} \to D^{0}K^{-}) \right| \left| A_{D}(m_{-}^{2}, m_{+}^{2}) + r_{B}e^{i\delta_{B}}e^{-i\gamma}A_{D}(m_{+}^{2}, m_{-}^{2}) \right|$ $m_{\pm}^2 = m^2 (K_S^0 \pi^{\pm}), m^2 (K_S^0 K^{\pm}),$ $m^2(\pi^0\pi^{\pm})$ $A_{+}(m_{-}^{2}, m_{+}^{2}) = \left| A(B^{+} \to \overline{D}^{0}K^{+}) \right| \left| A_{D}(m_{+}^{2}, m_{-}^{2}) + r_{B}e^{i\delta_{B}}e^{+i\gamma}A_{D}(m_{-}^{2}, m_{+}^{2}) \right|$ change of sign
- Extract γ , r_B , δ_B using cartesian coordinates x_+ and y_+ $\Gamma_{\pm}(m_{-}^{2},m_{+}^{2}) \propto \left|A_{D^{\pm}}\right|^{2} + r_{B}^{2}\left|A_{D^{\mp}}\right|^{2} + 2\eta \left\{x_{\pm}\Re e\left[A_{D^{\pm}}A_{D^{\mp}}^{*}\right] + y_{\pm}\Im m\left[A_{D^{\pm}}A_{D^{\mp}}^{*}\right]\right\}$ $x_{+} = \kappa r_{\rm B} \cos(\delta_{\rm B} \pm \gamma)$ $y_{+} = \kappa r_{B} \sin(\delta_{B} \pm \gamma)$ makes likelihood Gaussian and unbiased
- Two-fold ambiguity $(\delta_B, \gamma) \rightarrow (\delta_B + \pi, \gamma + \pi)$

 κ account for natural width of K^{*} n accounts for parities $D^{*0} \rightarrow D^{0}\gamma$ wrt $D^{0}\pi^{0}$

Dalitz plot analysis of D^0/\overline{D}^0 decays

• Extract D^0/\overline{D}^0 decay amplitudes from high statistics samples of $D^{*+} \rightarrow D^0 \pi^+$, tagging D^0 flavor with pion charge

 $\frac{487 \text{k evts}}{\text{purity}=97.7\%}_{\frac{1}{2}} \frac{1}{2} \frac{1}{2}$

Marc Verderi, LLR Ecole polytechnique / IN2P3- CNRS PIC 2008 m₀² (GeV²/c⁴)

1.6 1.8

1,6

m² (GeV²/c⁴)

Marc Verderi, LLR Ecole polytechnique / IN2P3- CNRS PIC 2008

BELLE Dalitz results

Parameter	1σ interval	2σ interval	Systematic error	Model uncertainty	
ϕ_3	$76^{\circ} {}^{+12^{\circ}}_{-13^{\circ}}$	$49^{\circ} < \phi_3 < 99^{\circ}$	4°	9°	
r_{DK}	0.16 ± 0.04	$0.08 < r_{DK} < 0.24$	0.01	0.05	1.000
r_{D^*K}	0.21 ± 0.08	$0.05 < r_{D^*K} < 0.39$	0.02	0.05	у
δ_{DK}	$136^{\circ} {}^{+14^{\circ}}_{-16^{\circ}}$	$100^{\circ} < \delta_{DK} < 163^{\circ}$	4°	23°	
δ_{D^*K}	$343^{\circ} {}^{+20^{\circ}}_{-22^{\circ}}$	$293^{\circ} < \delta_{DK} < 389^{\circ}$	4°	23°	

- Comparison BABAR/BELLE
 - BELLE uncertainties are significantly smaller than BABAR ones
- $\gamma = \left(76^{+22}_{-23} \pm 5 \pm 5\right)^{\circ}$
- $r_B(DK) = 0.086 \pm 0.035$
- despite the (x,y) observables have $r_B(D^*K) = 0.135 \pm 0.051^{\text{B}}$
- this is the " r_B " effect

х

 $\Delta x \approx \Delta y \approx r_B \Delta \theta$

21

Combined constraints on y

Babar + Belle, from the combination of all the measurements $\sum_{i=1}^{N}$

June 27, 2008

Marc Verderi, LLR Ecole polytechnique / IN2P3- CNRS PIC 2008

Conclusion

- Remarkable success of B factories
 - succeeded beyond expectation, with eg, measurement of γ
- BABAR has now finished its data taking
 - leaving BELLE alone in the "race"...
 - but still many analyses to do or update on the full data sample
- CKM UT is constrained by measurements based on both by CP conserving and CP violating
 - the picture is consistent with the SM !
- Measurement of semileptonic decays become more precise as the experimental techniques are improving and the theoretical computation of parameters.
- The measurement of β is a precision measurement, reaching accuracy of SM calculations
- The angle a will ultimately be limited by penguin pollution
 - still more new channels being added
- The measurement of γ is reaching the 13° precision

2001... and now

