Higgs searches at LHC Giorgia Mila

Physics in Collision Perugia, 28-06-08

University of Turin

Higgs production channels

Physics in collision

0

gluon-gluon fusion

- large NLO QCD corrections
- (σ_{NLO}≈2σ_{LO})
 - ? gluon structure function
 - ? fourth quark generation

VV fusion

- clear exp. signature
- cross section well known
- small QCD corrections

Higgsstrahlung

• quite large QCD corrections $(\sigma_{NLO} \approx 1.3 \sigma_{LO})$

tt associated production

- good exp. signature
- quite large QCD corrections $(\sigma_{NLO} \approx 1.2\sigma_{LO})$

Higgs decay modes

Physics in collision

Higgs boson decay channels branching ratio Vs Higgs mass

0

28-06-08

low masses searches

Physics in collision

Low Higgs mass favored by EW precision measurements

□ Experimentally, most difficult mass region:

- with $M_H < 130$ GeV the most promising decay channels are $H \rightarrow \gamma \gamma / \tau \tau$ ($\sigma \approx 50/100$ fb)
 - very high background rate, also from fakes (for ex. $\sigma_{\gamma j} \approx 10^{3} \sigma_{\gamma \gamma}$, $\sigma_{j j} \approx 10^{6} \sigma_{\gamma \gamma}$)
 - VBF production channel gives the best s/b ratio
- at low mass BR(H→bb) ≈ 70% but it cannot be a low lumi discovery channel:
 - huge QCD background
 - > associated production ttH ($\sigma \approx 10^6 \sigma_{bb}$)
 - very complex final state, many systematics involved
 - NEW!! VBF Higgs with H→bb + request of a high p_T central photon pioneer parton level study shows that s/b increases of more than one order of magnitude (destructive interference in central γ emission in QCD bbjj): E.Gabrielli, F.Maltoni, B.Mele, M.Moretti, F.Piccinini and R.Pittau, [hep-ph/0702119]

more details in back-up slides!

28-06-08

detection strategies

Physics in collision

CMS & ATLAS : "no particle of interest should escape unseen"

Physics environment :

- adronic collisions: look for final states with high energy leptons to trigger on signal evt
- particles produced over all the solid angle (need to cover at least $|\eta| < 2.5$)
- important for $\mu/e/\gamma$
 - efficient identification + excellent purity + good accurancy of p, measurement

CMS & ATLAS decided to answer to these needs starting from two different magnet systems (they have shaped the experiments in a major way - **goal**: maximize the factor BL²)

4T solenoid magnet in the tkr volume and high enough return flux for $p_{\tau}(\mu)$ measurement

- 2T solenoid magnet integrated in the barrel cryostat of the elm calorimeter
- 3T×m toroidal magnet in the µ spectrometer
- two 6T×m toroidal Endcap magnets positioned at both ends of the Solenoid

- ✓ M_H <130GeV CMS : H→ $\gamma\gamma$ [better than ATLAS due to its excellent elm calorimeter system] ATLAS : qqH→ qq $\tau\tau$ [better than CMS in jets&(E_t)_{mis} thanks to its good had calo]
- ✓ M_H >130GeV ATLAS&CMS : H→WW, H→ZZ [CMS better than ATLAS in lept decay thanks to its high performant tracker]

> For M_H >140 GeV, ~1 fb⁻¹ might be sufficient

For low higgs mass (< 140 GeV) situation more complex: ~ 5 fb⁻¹ needed and several channels must be combined

□ These are fb⁻¹ of **well understood data!!**

- good comprehension of the detector (commissioning & integration)
- control of the systematics from std candles
- MC tools well undestood
- measurement bkg (norm.+shape) from data

Plot from: J.J.Blaising, A.De Roeck, J.Ellis, F.Gianotti, P.Janot, G.Rolandi and D.Schlatter "Potential LHC contributions to Europe's Future Strategy at the High Energy Frontier"

Physics in collision

and now? let's switch on!

Special thanks to : Chiara Mariotti and Sara Bolognesi

References :

- **Higgs@LHC** S.Bolognesi, A. Di Simone V Italian workshop on the p-p physics at LHC, Perugia 30-01-08
- SM Higgs @CMS Vs SM Higgs @ATLAS C.Botta, N.De Filippis CMS Italia, Bari 15-16-08

