Electroweak constraints from HERA

Elisabetta Gallo, INFN Firenze

representing

- o HERA, a QCD-EW machine
- o EW constraints from inclusive data
- o Search for new physics at high Q²
- o Search for new physics in lepton+missing P_T events
- o Search for new physics in multilepton events

HERA, an ep collider

HERA luminosity

Last Fill 30/6/2007,

0.5 fb⁻¹ per exp., 1 fb⁻¹ H1+ZEUS combined

HERA luminosity

Last Fill 30/6/2007,

0.5 fb⁻¹ per exp., 1 fb⁻¹ H1+ZEUS combined

HERA, for EW studies

Main goal of HERA: study the proton parton densities, i.e. make predictions for LHC

But for $Q^2 \sim M_Z^2/M_W^2$ we can study EW interactions

10 ² |

Inclusive measurements

Neutral Current at high Q²

$$\sigma(e^{\pm}) \propto Y_{+}F_{2}(e^{\pm}) \mp Y_{-}xF_{3}(e^{\pm})$$

$$egin{array}{lll} F_{f 2}^{L,R} &=& \sum_q [xq(x,Q^2) + xar q(x,Q^2)] \cdot A_q^{L,R}, \ xF_3^{L,R} &=& \sum_q [xq(x,Q^2) - xar q(x,Q^2)] \cdot B_q^{L,R}. \end{array}$$

pure Z

$$A_q^{L,R} = Q_q^2 + 2Q_eQ_q(v_e \pm a_e)v_q\chi_Z + (v_e \pm a_e)^2(v_q^2 + a_q^2)(\chi_Z)^2,$$
 $B_q^{L,R} = \pm 2Q_eQ_q(v_e \pm a_e)a_q\chi_Z \pm 2(v_e \pm a_e)^2v_qa_q(\chi_Z)^2,$

Q² dependence in NC

Good agreement with SM (EW+QCD) over 7 orders of magnitude

xF₃ and x-dependence in NC

$$\sigma(e^{\pm}) \propto Y_{+}F_{2}(e^{\pm}) + \mp Y_{-}xF_{3}(e^{\pm})$$

$$xF_3^{\gamma Z} = \frac{x}{3}(2u_v + d_v + \Delta)$$

Gives a measure of the u and d valence at low x

(LHC will measure it in W-production)

Charged Current at high Q²

$$\frac{d - \frac{e^+ p}{unpolCC}}{dQ^2 dx} = \frac{G_F}{2 - \frac{M_W^2}{M_W^2 + Q^2}} - \left[\overline{u}_i(Q^2, x) + (1 - y)^2 d_i(Q^2, x) \right]$$

$$\frac{d\sigma_{\text{unpolCC}}^{e^{\sigma_{p}}}}{dQ^{2}dx} = \frac{G_{F}}{2\sigma} \underbrace{\sigma_{Q}^{\sigma} M_{W}^{2} + Q^{2}}_{Q} \underbrace{\sigma_{Q}^{\sigma} \left[u_{i}(Q^{2}, x) + (1\sigma y)^{2} \overline{d}_{i}(Q^{2}, x)\right]}_{Q}$$

NC/CC at high Q²

Textbook plot, the NC (EW) and CC interaction (pure weak) are of the same strength at the mass of the Z or W squared.

Polarized CC

Lepton naturally transver. polarized (Sokolov-Ternov effect) with a build-up time of 30 minutes. Spin rotators to provide longitudinally polarized beams at the experiments.

Lepton polarization 30-40%, changed every 2-3 months, equal lumi for e^+ , e^- , LH and RH. Polarization measured by three independent devices

Polarized CC

$$\sigma_{\text{polCC}}^{\text{e} \pm \text{p}}(Q^2, x) = \frac{1 \pm P_e}{2} \sigma_{\text{LHCC}}^{\text{e} \pm \text{p}}(Q^2, x)$$

Another textbook plot, absence of right-handed charged current

(Polarized NC at high Q²)

$$A^{\pm} = \frac{2}{P_R - P_L} \cdot \frac{\sigma^{\pm}(P_R) - \sigma^{\pm}(P_L)}{\sigma^{\pm}(P_R) + \sigma^{\pm}(P_L)} \simeq \mp k a_e \frac{F_2^{\gamma Z}}{F_2}$$

In NC the effect of P is small, but one can measure the asymmetry: parity-violating effect observed in NC at high Q^2 for the first time

Differential CC cross-sections

HERA Charged Current

Parton densities and QCD fits

$$F_2 = x \sum e_q^2 (q + \overline{q})$$

- Measure F₂,
- Determine xu,xd,xS,xg from fits at a certain Q_0^2 and then evolve in Q^2 with QCD (DGLAP evolution equations)
- · But at high Q2 and with polarization, we can do more

$$\sum_{r} (e^{\pm} p) = (Y_{+} F_{2}^{0} \mp Y_{\Sigma} x F_{3}^{0}) \mp P(Y_{\Sigma} F_{2}^{P} \mp Y_{-} x F_{3}^{P})$$

$$F_2^{0,P} = \sum_i A_i^{0,P}(Q^2) [xq_i(x,Q^2) + x\bar{q}(x,Q^2)]$$

$$xF_3^{0,P} = \sum_i B_i^{0,P}(Q^2)[xq_i(x,Q^2)\sum_i xq_i(x,Q^2)]$$

$$A^{0}(Q^{2}) = -e_{i}^{2} - 2e_{i}v_{i}v_{e}P_{Z} + (v_{e}^{2} + a_{e}^{2})(v_{i}^{2} + a_{i}^{2})P_{Z}^{2}$$

$$B_{i}^{0}(Q^{2}) = -2e_{i}a_{i}a_{e}P_{Z} + 4a_{i}a_{e}v_{i}v_{e}P_{Z}^{2}$$

$$A_i^P(Q^2) = -2e_i v_i a_e P_Z - 2v_e a_e (v_i^2 + a_i^2) P_Z^2$$

$$B_i^P(Q^2) = -2e_i a_i v_e P_Z - 2v_i a_i (v_e^2 + a_e^2) P_Z^2$$

Neutral current cross-section

Polarized structure functions

Unpolarized xF₃ determines the axial couplings

Polarized F₂ determines the vector couplings

Parton densities and Z-couplings fitted at the same time

ZEUS-Pol fit:

- o fit ZEUS data only
- o low-x gluon and sea constrained by F_2 data
- o u,d separation by CC
- o EW parameters by NC at high Q^2

Vector and axial couplings for u- and d- quarks determined with competitive precision, in agreement with SM

Search for new physics in EW processes

Search for Leptoquarks

All HERA II data analyzed by H1, ex. For one LQ type:

Search for Contact Interactions

The $d\rightarrow dQ^2$ at high Q^2 could show signs of new physics at scales \rightarrow greater than \sqrt{s}

Contact Interactions

Example for the VV, AA interactions:

ZEUS

Extra dimensions

jet(s)+MET

Quark radius

Can be determined as a form factor, assume electron pointlike:

$$\frac{d\sigma}{dQ^2} = \frac{d\sigma^{SM}}{dQ^2} \cdot \left[1 - \frac{R_q^2}{6} Q^2\right]^2 \cdot \left[1 - \frac{R_e^2}{6} Q^2\right]^2$$

$$R_q < 0.74 \cdot 10^{-16} \ \mathrm{cm}$$

ZEUS

$$R_q < 0.62 \cdot 10^{-16} \text{ cm}$$

Most stringent limit today

Search for new physics in W-like events

New physics at H1?

Seen only in e⁺p, not seen by ZEUS

Due to W production in the SM

Search for new physics in W-like events

<u>-</u>	H1 Preliminary (HERA I+II)			
$ \gamma_{ttZ} $	(1) (1)			
1=	→ Excluded			
-	, F 11 7F110			
į	Excl. by ZEUS			
	→ Excl. by CDF			
-	\			
	Excl. by L3			
10-1	Exci. by L3			
. [$\kappa_{tc\gamma} = v_{tcZ} = 0$			
F	$m_t = 175 \text{ GeV}$			
10 ⁻¹	1 $ \kappa_{tucy} $			

P _τ ^x > 25 GeV		e+μ Data/SM		_
H1 ZEUS	0.29 fb ⁻¹ 0.29 fb ⁻¹		17/7.1±0.9 6/7.5±1.1	(2.9σ)
H1+ZEUS	0.58 fb ⁻¹		23/14.6±1.9	(1.8σ)

Limit on single top production due to an anomalous FCNC coupling

Measurement of W cross-section

Measurement of W polarization

$$\begin{array}{ll} \frac{dN}{d\cos\theta^*} & \propto & (1-F_--F_0)\cdot\frac{3}{8}\left(1+\cos\theta^*\right)^2 \\ & + & F_0\cdot\frac{3}{4}\left(1-\cos^2\theta^*\right) \\ & + & F_-\cdot\frac{3}{8}\left(1-\cos\theta^*\right)^2. \end{array}$$

Search for new physics in BH-like events

Again excess was observed by H1 in the 2e, 3e channel in e⁺p.

Look for 2e, 3e in whole statistics H1+ZEUS

Search for new physics in BH-like events

$\Sigma P_T > 100 \text{ GeV}$

Data sample	Data	SM
e^+p (0.56 fb ⁻¹)	5	1.82 ± 0.21
e^-p (0.38 fb ⁻¹)		1.19 ± 0.14
${ m e^{\pm}p}~(0.94~{ m fb^{-1}})$	6	3.00 ± 0.34

Marginal excess, in general agreement with SM

Conclusions

o HERA completing analysis of inclusive data in CC and NC at high Q² with the polarized HERA II data.

o Legacy of HERA will be a reanalysis of all HERAI+II, combined data from H1+ZEUS.

o More precise determination of EW parameters and stringent limits on the quark radius will follow from this.

Thank you for your attention

