ZZ→4I measurement with the first ATLAS data

XXVIII PHYSICS IN COLLISION Perugia, Italy, 25-28 June 2008

For the ATLAS collaboration: Ilektra A. Christidi Aristotle University of Thessaloniki, Greece

- Work done for the Computing System Commissioning (CSC) note "Diboson physics studies with the ATLAS detector", using CSC simulated data.
- Analysis:
 - Muon & electron selection
 - Lepton pairing and cuts on pairs
 - Results
- Triple Gauge Coupling (TGC) limits
- Conclusions

Motivation

- SM cross section not measured yet
- Irreducible background to $H \rightarrow 4I$
- Develop tools for detector calibration using $Z \rightarrow 2I$
- Beyond the SM: Triple Gauge Couplings (TGCs) \bar{q}

04

> 3 event topologies: 4µ, 4e, 2µ2e

- Backgrounds: Zbb(bar), tt(bar)
 - MC samples used:

Channel	Generator	Events	Filter eff.	x-sec	K factor
ZZ->4I	Pythia	43000	0.219	159fb	1.35
Zbb(bar)	Acer/Pythia	313689	0.009	52pb	1.42
tt(bar)	MC@NLO/Jimmy	152701	0.007	833pb	-

The ATLAS detector

Preselection cuts

Muons

- Combined Track (both in Inner Detector and Muon Spectrometer) OR Standalone Track (only in MS no ID for $|\eta|>2.5$)
- chisq/DOF < 15 on match
- chisq/DOF < 15 on fit
- $Pt > 6 \text{ GeV/c}, |\eta| < 2.7$

Electrons

- Reconstructed as an electron or both as an electron and a soft electron, by the respective algorithms
- 0.5 < E/P < 3.0
- Pt > 6 GeV/c, $|\eta| < 2.5$

Create same flavor, opposite charge pairs with lepton $\Delta R > 0.2$

After preselection: Pt

At least one lepton in each pair with Pt > 20 GeV/c

After preselection: Isolation

Electron: Cuts on the shower shape in the electromagnetic calorimeter

Muon: Isolation Ratio < 0.2 (energy in a cone of $\Delta R = \sqrt{\Delta \varphi^2 + \Delta \eta^2} = 0.4$ around the muon, divided by Et)

21 invariant mass

ZZ: m of both lepton pairs between 70 and 110 GeV/c

ZZ*: m(pair1) between 70 and 110 GeV/c, m(pair2) > 20 GeV/c

Final 4I Invariant Masses: ZZ

normalized to 10fb⁻¹

Final 4I Invariant Masses: ZZ*

normalized to 10fb⁻¹

Efficiency summary

Signal	$ZZ \rightarrow 4\mu \ (\%)$		$ZZ \rightarrow 4e (\%)$		$ZZ \rightarrow 2\mu 2e (\%)$		
Signal	ZZ^{*}	LL	ZZ^{\uparrow}	ZZ	ZZ^{*}	LL	
Lepton Preselection		71		62		65	
Pair formation,dR		99		88		93	
Isolation, P_t^{max}		81		59		59	
Z Mass region	92	73	93	76	95	78	
Total	52	41	30	24	34	28	
	$ZZ \rightarrow 4\mu$ (%)		$ZZ \rightarrow 4e \ (\%)$		$ZZ \rightarrow 2\mu 2e$ (%)		
Zbb	ZZ^*	ŻŻ	ZZ^*	ŻŻ	ZZ^*		
Lepton Preselection	6.3		11		18		
Pair formation,dR	77		59		48		
Isolation, P_t^{max}	1.3		4.3		0.7		
Z Mass region	25	2.0	26	2.2	70	8.8	
Total	0.0156	0.0013	0.0692	0.0061	0.040	5 0.0051	
	$ZZ \rightarrow 4\mu$ (%)		$ZZ \rightarrow 4e$ (%)		$ZZ \rightarrow 2\mu 2e$ (%)		
tt	ZZ^*	ZZ	ZZ^*	ZZ	ZZ^*	ZZ	
Lepton Preselection	3.2		25		36		
Pair formation,dR 63		54		44			
Isolation, P_t^{max}	0.	0.13		0.31		0.12	
Z Mass region	50	25	21	1.6	38	3.5	
Total	0.0013	0.0007	0.0085	0.0007	0.007	2 0.0007	

Results: signal/bg

Results below are normalized to 1fb⁻¹

	4μ events		4e events		2µ2e events		Total	
	ZZ^*	ZZ	ZZ^*	ZZ	ZZ^*	ZZ	ZZ^*	ZZ
Signal	$5.72 {\pm} 0.06$	$4.52{\pm}0.05$	$3.17{\pm}0.04$	$2.59{\pm}0.04$	$7.56{\pm}0.07$	$6.18{\pm}0.06$	16.5 ± 0.10	13.3±0.09
Zbbī	$0.11{\pm}0.01$	$0.009 {\pm} 0.003$	$0.48{\pm}0.02$	$0.042{\pm}0.007$	$0.28 {\pm} 0.02$	$0.035{\pm}0.006$	$0.87 {\pm} 0.03$	$0.086 {\pm} 0.010$
tī	$0.08{\pm}0.06$	$0.04{\pm}0.04$	$0.52{\pm}0.14$	$0.04{\pm}0.04$	$0.44{\pm}0.13$	$0.04{\pm}0.04$	1.03 ± 0.20	0.12 ± 0.07
Total bgr	$0.19{\pm}0.06$	$0.049{\pm}0.040$	$1.00 {\pm} 0.14$	$0.082{\pm}0.040$	$0.72{\pm}0.13$	$0.075 {\pm} 0.040$	1.90 ± 0.20	0.20±0.07

sg/bg = 8.7 66.5 *significance* = 6.6 7.7

Where significance = sg/\sqrt{bg} , and the 95% Poisson limit for 1 and 0 events respectively is used for background

Systematic errors

From MC and data

- Theoretical uncertainties: PDFs, QCD corrections (scaling uncertainty for NLO calculations): 3.4-6.2% (run MC with different structure functions/scale values)
- Luminosity: ~5% (Tevatron: 6.5% at 0.3 fb⁻¹, and got less with more accumulated luminosity)
- Trigger & Lepton identification efficiency: 2-3% (MC data with pileup and cavern backgrounds, OR real data with tag-andprobe method with Z→2I decays)
- Jet & lepton energy scale: 2-3% (from WW & WZ Boosted Decision Trees study)
- Background estimate: ~2% (mainly from lepton identification)

TGCs: the principle

P. Ward *et al.*, University of Cambridge

- $f_4^V = f_5^V = 0$ at tree level in the SM
- 4 parameters accessible with ZZ \rightarrow 4I: $f_4^Z, f_5^Z, f_4^\gamma, f_5^\gamma$
- 4 observables change with anomalous TGC: cross-section vs Pt(Z), M(ZZ), lepton angle, Z angle
- The following results are with only Pt(Z) distributions

TGCs: the method

In collaboration with P. Ward et al., University of Cambridge

- Use LO Baur-Rainwater (BR) MC to generate Pt(Z) distributions for different f^V_i
- Fit cross-section to quadratic function of f_{i}^{V} in bins of Pt(Z)
- Correct for NLO effects with the ratio of full NLO MC to the Standard Model ($f_i^V = 0$) BR one
- Find *efficiency* from full MC (events after all cuts/truth events)

TGCs: likelihood

Expected events = BR x-section × NLO correction × efficiency × luminosity

- Generate fake event samples based on this expectation for signal and Zbb background
- Binned Likelihood in each Pt(Z) bin:

$$L = \int_{1-3\sigma_b}^{1+3\sigma_b} \int_{1-3\sigma_s}^{1+3\sigma_s} g_s g_b \frac{(f_s v_s + f_b v_b)^n e^{-(f_s v_s + f_b v_b)}}{n!} df_s df_b \quad \text{with} \quad g_i = \frac{e^{(1-f_i)^2/2\sigma_i^2}}{\int_0^\infty e^{(1-f_i)^2/2\sigma_i^2}} (i=s,b)$$

with one free parameter ($\nu_s(f_i^V)$). In all bins

$$LL = -2 \sum_{k=\text{ channels } i=\text{ bins}} \log(L_i^k)$$

• Minimizing this, we get the most likely f_{j}^{V} value and the CLs.

TGCs: results

Conclusions

- Baseline ZZ→4I analysis done
- Signal expectation at 1 fb⁻¹: 13.3 ZZ, 16.5 ZZ* events, with at least an order of magnitude lower background
- Systematic errors need to be better understood
- TGC limit measurement is promising to improve the LEP limits with the first 10 fb⁻¹ of data
- Many ideas for improvements/optimizations

Extras

Future plans

- Use also low-Pt muons (only ID track and MS hits)
- Look into more ways to reduce bg
 - Vertexing/IP for Zbb
 - Et(miss) for tt
- Assess & correct lepton-to-Z mis-assignment
 - preliminary study shows ~4% mis-assignment!
- Tune cuts for $ZZ^* \rightarrow 4I$? (relevant for low Higgs mass)
- Refine Z mass cut for on-shell Z: constrained fit ?
- Calculate $ZZ \rightarrow 4I$ background to $H \rightarrow 4I$ from data

<u>For TGCs:</u>

- Use the rest of the observables to improve limit (advantage over the ZZ→llvv channel)
 - Multi-dimensional fits ?