Top Quark Properties

Mousumi Datta

Fermi National Accelerator Laboratory XXVIII PHYSICS IN COLLISION Perugia, Italy June 25-28, 2008

Outline

Introduction

- Exploring top properties
 - Top quark mass
 - Other top properties with ttbar sample
 - Forward backward asymmetry
 - Differential cross section
 - W helicity
 - Search for beyond the Standard Model (SM) physics
 - Search for ttbar resonance, massive gluon, FCNC, stop, t', H⁺, W', Wtb anomalous couplings
- Summary and prospects

Top Quark Physics

> Existence required by the SM

- Spin 1/2 fermion, charge +2/3
- Weak-isospin partner of the bottom quark
- > Discovered ~12 years ago at Tevatron
- > Mass surprisingly large $\Rightarrow \sim 40x$ heavier than the bottom quark
 - Only SM fermion with mass at the EW scale

As Top-quark is heavy: ➤ Top decays before hadronization: Γ~1.4 GeV >>Λ_{QCD} • Provide a unique opportunity to study a "bare" quark > Currently only produced at Tevatron ⇒ somewhat "rare"

Why Study Top Properties?

Try to address some of the questions:

- Why is top so heavy ? Is top related to the EWSB mechanism? (PRD 59, 075003 (1999); PRD 65, 055006 (2002))
- Is it the SM top?
- > Search for beyond SM physics:
 - Does top decay into new particles? couple via new interactions?

Pair production

- Cross section (F. Déliot's talk)
- Production mechanism
- Differential cross section

• Searchs: ttbar resonance, FCNC, scalar top, t' **Characteristics**

• Mass

- Charge
- Life-time, Spin,

DECAY

- W helicity
- Charged Higgs
- Anomalous couplings

M. Datta, FNAL

June 26, 2008

Producing Top Quarks

- > At hadron colliders
 - Predominantly pair produced via strong interaction
 - Electro-weak single top production

Tevatron Run II

Proton-antiproton collider (2001-20xx) $\sqrt{s} = 1.96 \text{ TeV}$

 $\sigma_{tt} = ~7.6 \text{ pb at } m_{top} = 171 \text{ GeV/c}^2$ $\sigma_{single top} = ~2.9 \text{ pb at } m_{top} = 175 \text{ GeV/c}^2$ **Experiments: CDF, D0**

Large Hadron Collider (LHC) Proton-proton collider (2008-20xx) $\sqrt{s} = 14 \text{ TeV}$

 $\sigma_{tt} = \sim 908 \text{ pb at } m_{top} = 171 \text{ GeV/c}^2$ $\sigma_{single top} = \sim 315 \text{ pb at } m_{top} = 175 \text{ GeV/c}^2$ **Experiments: ATLAS, CMS**

M. Datta, FNAL

Top Decay

- ➤ In the SM: $Br(t \rightarrow Wb) \sim 100\%$
- Top pair decay channels classified by W decays
- > Dilepton: l vl vbb
 - > Experimental signature: 2 high- P_T e's or μ 's, 2 high- E_T jets, large missing E_T (for l = e, μ or τ decaying leptonically)
 - Low background

Lepton+jets: lvqqbb

- > Experimental signature: 1 high- P_T e or μ , 4 jets (2 b's), large missing E_T (for $l = e, \mu$ or τ decaying leptonically)
- Medium background
- > All-hadronic: qqqqbb
 - Experimental signature: 6 jets (2 b's)
 - Large background

Top Pair Decay Channels

Jet Energy Scale

> Jet energy scale (JES)

- Determine the energy of the quarks produced in the hard scattered
- We use the Monte Carlo and data to derive the jet energy scale

Jet energy scale uncertainties

• Differences between data and Monte Carlo from all these effects

Jet Energy Scale Uncertainties

• Uncertainty on JES \Rightarrow About 3% systematic uncertainty on Top mass measurement when convoluted with ttbar p_T spectrum

In-situ Measurement of JES

➤ Additionally, we use W→jj mass resonance (M_{jj}) to measure the jet energy scale (JES) uncertainty

Measurement of JES scales directly with statistics!

Signal-to-Background Ratio (S/B)

- b-jet identification provides significant background suppression
- > Dilepton channel: Manageable S/B even without b-tagging
- Lepton+Jets channel: Good S/B after b-tagging
 - Remaining dominant background from W+jets
- > All-hadronic channel suffers from huge QCD background
 - S/B \sim 1/1000 at trigger level
 - Needs additional effort for background suppression
 - Neural network (NN) based event selection has been used

S/B at	Dilepton	Lepton+Jets	All-hadronic	σ (pb) $\sigma/100$ (!)	
Tevatron			(After NN	250 σ/100 (!))
			Selection)	200 W	
0 b-tag	1:1	~1:4	~1:20	150	tt+X W+X
1 b-tag		4:1	1:5	100 tt	
2 b-tags	20:1	20:1	1:2	tt	
Most top properties analyses use				Tevatron LHC / 10	
relatively clean event sample				Tevatron VS LHC σ'^{10} (!)	
June 26, 2008 M		M. Datta, FNAL		10	

Top Mass

Why measure the Top Quark Mass?

- Related to standard model observables and parameters through loop diagrams
- Consistency checks of SM parameters

- Precision measurements of the M_{top} (and M_W) allow prediction of the M_{Higgs}
- Constraint on Higgs mass can point to physics beyond the standard model

80.7 Tevatron/LEP 2 68% CL LEP1/SLD: darker region 80.6 () 80. 5 80.4 € 80.5 MSSM 80.3 ________ 114 GeV SM 1µ= 400 Ge\ 80.2 Heinemeyer, Holik, Stockinger, Weber, Weiglein'07 165 170 175 180 185 160 m_{top} (GeV)

June 26, 2008

Top Mass at Tevatron

- > Robust program of top quark mass measurements
- ➤ Many measurements in all the different channels → consistency
- ➤ Different methods of extraction with different sensitivity → confidence
- ➤ Combine all channels and all methods → precision

Measurement Techniques

Template Method

- Select observables sensitive to top mass
- Build templates from signal MC and background distributions in the chosen observable
- Fit template to data
- Event-by-Event likelihood
 - For each event determine likelihood as a function of top mass
 - Multiply event probabilities to obtain joint likelihood ⇒ extract the most likely value

Common procedures:

- Calibrate and validate the technique with data-size pseudo-experiments
 - Check and/or correct for biases
 - Check pull width, expected sensitivity ...

M. Datta, FNAL

Template Analysis: Dilepton and Lepton+Jets

Simultaneous measurement of top mass

- Lepton+Jets:
 - Select events with \geq 4 jets and \geq 1 b-tag
 - 344 selected events
- Dilepton:
 - → Select events with ≥ 2 jets and ≥ 0 b-tag
 - J44 selected events
- > 2D templates in each channel:
 - Reconstructed top mass
 - Lepton+Jets : **△JES**
 - Dilepton: $H_T = \Sigma(E_{T,jets} + E_{T,lep} + E_{T,missing})$
- The JES from the Lepton+Jets channel naturally applied to the Dilepton channel

June 26, 2008

Template Analysis: Top Mass Reconstruction in Lepton+Jets

Minimize a χ² describing the over constrained kinematics of Lepton+Jets channel

- > Select one permutation based on χ^2 :
 - Require consistency with identified b-jet assignments

June 26, 2008

M. Datta, FNAL

Template Analysis: Top Mass Reconstruction in Dilepton

- Under-constraint kinematics due to two neutrinos
- Use Neutrino Weighting Algorithm (NWA)
 - Scan potential top masses and v rapidities (η) and solve for v's
 - Compare each combination of v solution to measured missing E_T

$$w^{\nu}(\boldsymbol{M}_{t}) = \exp\left(\frac{-\left(\boldsymbol{E}_{x}^{calc} - \boldsymbol{E}_{x}^{obs}\right)^{2}}{2\sigma_{\boldsymbol{E}_{x}}^{2}}\right) \exp\left(\frac{-\left(\boldsymbol{E}_{y}^{calc} - \boldsymbol{E}_{y}^{obs}\right)^{2}}{2\sigma_{\boldsymbol{E}_{y}}^{2}}\right)$$

- > Integrate over η of the v's, obtaining total weight for different top mass hypothesis
 - Reconstructed top mass ⇒ Mass hypothesis with largest weight

Method Validation

Extensive checks and validation of the method performed

positive error

negative error

180

M_{top} (GeV/c²)

175

Template Analysis: Data Fit

M_{reco}, Lepton+Jets, 1 b-tag

M_{ii}, Lepton+Jets, 2 b-tags

June 26, 2008

Template Analysis: Measured Top Mass

Combined fit result:

171.9 \pm 1.7 (stat.+JES) \pm 1.0 (syst) GeV/c²

> Lepton+Jets only result: 171.8 \pm 1.9 (stat.+JES) \pm 1.0 (syst) GeV/c²

Dilepton only result: 171.6 +^{3.4} (stat.) ± 3.8 (syst) GeV/c²
 June 26, 2008

Syst. (GeV/c ²)	LJ	DIL	Comb
b-JES	0.6	0.5	0.6
Residual JES	0.5	3.5	0.5
ISR	0.3	0.4	0.4
FSR	0.2	0.5	0.2
PDFs	0.3	0.5	0.3
Generator	0.2	0.8	0.2
LJ Bkg Shape	0.2	0.0	0.2
DIL Bkg Shape	0.0	0.4	0.1
MC statistics	0.1	0.2	0.1
Lept energy scale	0.1	0.4	0.1
pileup	0.1	0.1	0.1
gg fraction	0.0	0.2	0.0
Total	1.0	3.8	1.0

Event-by-Event Likelihood Matrix Element Method: Lepton+Jets

- > For each event build a signal and background probabilities
- > For a set of measured variable x:

 $d^n \sigma$ is the differential cross section: LO Matrix element

W(x,y) is the probability that a parton level set of variables y will be measured as a set of variables x (parton level corrections)

$$\overline{P}_{signal}(x; M_{top}, JES) = \frac{1}{\sigma} \int d^n \sigma(y; M_{top}) dq_1 dq_2 f(q_1) f(q_2) W(JES, x, y)$$

f(q) is the probability distribution that a parton will have a momentum q

All permutations and neutrino solutions are taken into account
Lepton momenta and all angles are considered well measured

Matrix Element Method: Lepton+Jets

Maximize likelihood and simultaneously determines M_{top} and JES

$$L(C_s, M_{top}, JES) \propto \prod_{i=1}^{Nevents} (C_s P_{signal,i}(M_{top}, JES) + (1 - C_s) P_{background,i}(JES))$$

Signal fraction

Calibration against simulation

2 fb⁻¹ **Matrix Element: Measured Top Mass**

M. Datta, FNAL

Matrix Element Method: Dilepton

Sources of Systematics	δm _{top} (GeV/c ²)
JES	2.5
Other	1.5
Total	2.9

 171.2 ± 2.7 (stat.) ± 2.9 (syst.) GeV/c²

- Most sensitive analysis in Dilepton channel
- Comparable statistical and systematic uncertainties
- Optimized event selection for sensitivity
 - Use NeuroEvolution method

(K. Stanley and R. Miikkulainen, Evolutionary Computation 10(2) 99-127, 2002)

 Method capable of evolving Neural Network's topology in addition to its weights.

Template: All Hadronic

- Suffers from huge QCD background
 - Apply neural net (NN) kinematical selection
 - Require ≥ 1 b-tag
- Use kinematic fitter to reconstruct top mass
 - χ^2 : constrain 2 dijet masses to the W mass, 2 triplet masses to be equal, and 6 terms representing the jet JES.
- > Select permutation with min χ^2
 - requiring consistency with identified b-jet assignments

All Hadronic : Measured Top Mass

> Likelihood fit extracts top mass and JES

Source	GeV/c2
Residual JES	0.8
b-JES	0.6
SF E _T Dependence	0.4
Radiation	0.3
PDFs	0.4
Generator	0.5
Bkg. Template	1.0
Signal Template	0.3
Method related	0.4
Total	1.7

 $176.9 \pm 3.8 \text{ (stat+JES)} \pm 1.7 \text{ (syst)} \text{ GeV/c}^2$

June 26, 2008

M. Datta, FNAL

2 fb⁻¹

Different Methods: Lepton P_T and L2d

- > Use single variables sensitive to top mass
 - L2d/L_{xy}: B hadron decay length \propto b-jet boost \propto M_{top}
 - Lepton transverse momentum
- Relies on tracking, less JES dependence
 - Uncorrelated with other measurements

CDF Run II Preliminary (1.9 fb⁻¹) Measured Top Mass (GeV/c²)

Combined : 175.3±6.2(stat)±3.0(syst)

L2d : 176.7^{+10.0}_{8.9}(stat)±3.4(syst)

Lepton P_T : 173.5^{+8.9}_{9.1}(stat)±4.2(syst)

Statistically limited at Tevatron

➤ Relatively large systematic uncertainty from sources like radiation, generator, modeling ⇒ work in progress

June 26, 2008

Syst. (GeV/c ²)	L2d	LepPt	Comb
Radiation	0.9	2.3	1.5
PDFs	0.3	0.6	0.5
Generator	0.7	1.2	0.6
L2d SF	2.9	0	1.4
LepPt Scale	0	2.3	1.1
Bkg. Shape	1.0	2.3	1.6
Out-of-cone JES	1.0	0.3	0.6
Total	3.4	4.2	3.0

Cross-section and Mass

Explore the cross section and mass dependence for top mass measurement or improving sensitivity

Determine top mass by comparing measured ttbar cross section with best theoretical calculations (*Details in F. Déliot's talk*)

Top mass = $170 \pm 7 \text{ GeV/c}^2$

June 26, 2008

For Dilepton analysis: Apply additional constrain using theoretical ttbar cross section with kinematic information

Top mass = $170.7^{+4.2}_{-3.9}$ (stat) ± 2.6 (syst) ± 2.4 (theory) GeV/c²

Combination of Top Mass Results

- Combine Run I measurements with most recent Run II measurements
- Take into account the statistical and systematic uncertainties and their correlations (NIM A270 (1988) 110, NIM A500 (2003) 391)
- Combined top mass 172.6±1.4 GeV/c² χ2/ndof 6.9/11 ⇒ 81% prob
 - Good agreement among all input measurements
- Top mass known with relative precision of 0.8%

- > Top mass measurements are becoming systematic dominated
- ➤ In channel/analysis not using in-situ JES ⇒ Systematics dominated by the uncertainty on parton energies (JES)
- > Other sources arise from the assumptions employed to infer M_{top}

Statistical and systematical sensitivities by chamier				
$\delta \mathbf{M}_{top}$	Statistical	JES (DIL) OR	Other	
per CDF/D0	(Including in-situ JES	Residual JES	Systematics	
Analysis	for LJ& All-Had)	(LJ and All-Had)	(GeV/c ²)	
with $\sim 2 \text{ fb}^{-1}$	(GeV/c ²)	(GeV/c ²)		
Dilepton	~2.7	~2.5	~1.5	
Lepton+Jets	~1.5	~0.6	~0.8	
All Jets	~3.8	~1.0	~1.4	

Statistical and systematical sensitivities by channel

Prospects : Top Mass At Tevatron

The combined CDF and D0 top mass measurement is at <1% precision</p>

- Surpassed Run II goal for $\delta M_{top} \sim 3 \text{ GeV}$
- Improving constraint on the SM Higgs boson
 - Pushing the SM to it's boundary

June 26, 2008

M. Datta, FNAL

Prospects :

Top Mass At Tevatron (Cont')

Working toward the final systematic uncertainties on Top mass measurement

Are we missing anything? Are all possible sources properly accounted for?

Work in progress:

- Color reconnection
 - Estimating effect on Top mass measurement using theory models (P. Skands and D. Wicke, hep-ph/0703081v2)
- > Revisiting various sources of systematics
 - Better understanding
 - Possibly avoid double counting and over estimation

Other Properties with ttbar Sample

Forward Backward Asymmetry (A_{fb}) in Top Pair Production

- Asymmetry caused by interference of ME amplitudes for same final state
- > The SM predictions:
 - In ttbar frame: $A_{fb}^{ttbar} = (4-7)\%$ in NLO (arXiv:0709.1652)
 - In ppbar frame (A_{fb}^{ttbar}) : reduced by ~30% relative to A_{fb}^{ttbar}

 $A_{fb}^{p\overline{p}} = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N(\cos\theta > 0) + N(\cos\theta < 0)}$

 $\cos\theta = -Q_{\ell} \cdot \cos\theta(t_{hadronic}, Beam_{proton})$

- > Can be significantly enhanced in different BSM models:
 - Z'-like states with parity violating coupling (PLB 387, 113 (1996)), theories with chiral color (PLB 190, 157 (1987), PLB 200, 211(1988))
- > A_{fb} measured in both the ttbar rest frame and the lab rest frame

$$A_{fb}^{t\bar{t}} = \frac{N(\Delta Y > 0) - N(\Delta Y < 0)}{N(\Delta Y > 0) + N(\Delta Y < 0)}$$
$$\Delta Y = -Q_{\ell} \cdot (Y_{t,leptonic} - Y_{t,hadronic})$$

June 26, 2008

M. Datta, FNAL

A_{fb} Measurements

1000

D0 Measurements (PRL 100, 142002 (2008)) $A_{fb}^{uncorrected} =$ 0.12 ± 0.08 (stat) \pm 0.01(syst) • Set constrain on leptophobic Z' production

CDF Measurements (submitted to PRL)

 Apply unfolding to go from reconstructed to parton level $A_{fb}^{tt} =$ $0.24 \pm 0.13(\text{stat}) \pm 0.04(\text{syst})$ $A_{fb}^{pp} =$ $0.17 \pm 0.07(\text{stat}) \pm 0.04(\text{syst})$ • Consistent with SM expectation

Measurement of the ttbar ^{2 fb-1} Differential Cross Section dσ/dM_{ttbar}

> In BSM models new gauge interactions can produce massive particles which may strongly couple to top quark (PRD 49, 4454 (1994), hep-ph/07122355V1)

- Can produce resonances in the ttbar invariant mass (M_{ttbar}) distribution
- \bullet Or may interfere with the SM and modify the shape of $\mathrm{M}_{\mathrm{ttbar}}$
- Measure top pair cross-section in bins of M_{ttbar} for Lepton+Jets events
 - Correct the reconstructed invariant mass distribution to back to true distribution
- Check consistency with the SM
 - Put more emphasis on the tail of the distribution
- Data consistent with SM

W Helicity: tbW coupling

- > The SM top decays via EW interaction: $Br(t \rightarrow bW) \sim 100\%$
 - Top decays as a bare quark \Rightarrow spin info transferred to final states
- Possible W helicities:
 - $J \cdot P = 0$: longitudinal
 - $J \cdot P = -1$: left-handed
 - $J \cdot P = +1$: right-handed
- ▶ V-A coupling in the SM \Rightarrow
 - longitudinal fraction $f_0 \sim 70\%$
 - left-handed fraction $f_{-} \sim 30\%$
 - right-handed fraction $f_+ \sim 0\%$
- The SM prediction modified in various new physics models
 - PRD 45, 124 (1992); PRL 38, 1252 (1977);
 J. Phys. G26, 99 (2000); PRD 62, 011702 (2000);
 PRD 65, 053002 (2002).
- > Recent measurements use $\cos\theta^*$:

Angle between lepton and b in W rest frame.

June 26, 2008

M. Datta, FNAL

- > Template based analysis using $\cos\theta^*$
 - Reconstruct ttbar decay using event kinematics

> Template method

- Simultaneously measure f_0 and f_+
- Measure f_0 assuming fixed $f_+=0.0$
- Measure f_+ assuming fixed $f_0=0.7$
- Using a matrix element-based technique
 - Likelihood based on differential cross-sections of ttbar and dominant background
 - Measure f_0 assuming fixed $f_+=0.0$

June 26, 2008

M. Datta, FNAL

Search for Beyond the SM Physics With ttbar Sample

FCNC Search

- Search for Flavor Changing Neutral Current (FCNC) process t→Zq
 - Highly suppressed in SM : O(10⁻¹⁴)
 - Different new physics models predict much higher rate, up to O(10⁻⁴)
- Select $Z(\rightarrow ee/\mu\mu)+\geq 4$ Jets
 - Fit to a mass χ^2
 - Separate events 0 b-tag and ≥1 b-tag events

Resonant ttbar Production

Various BSM theories predict resonant ttbar production from the decays of massive Z-like bosons: Topcolor (PRD49, 4454, 1994), KK gluon excitation in RS model (hep-ph/0701166)

- Search for "massive gluon" decaying to ttbar pair (PRD 49, 4454 (1994))
 - The SM qqbar \rightarrow ttbar and qqbar \rightarrow G \rightarrow ttbar interfere
- Scan mass and width of massive gluon to extract the coupling strength

Search for

$$\widetilde{t_1} \to b \widetilde{\chi}_1^{\pm} \to b \widetilde{\chi}_1^0 \ell \nu$$

> Very similar event signature as SM ttbar decays \Rightarrow can be hiding in Tevatron data

$$\begin{split} & \tilde{\chi}_1^0 \text{ is the LSP, and } \tilde{q}, \tilde{\ell}, \tilde{\nu} \text{ are heavy} \\ & m_{\tilde{t}_1} \lesssim m_t \\ & m_{\tilde{\chi}_1^+} < m_{\tilde{t}_1} - m_b \end{split}$$

- > Assume BR(stop \rightarrow b and chargino)=100%
- Search in dilepton (CDF) and lepton+jets
 (D0) final states.
 - No evidence for stop quark pair production observed

June 26, 2008

2.3 fb⁻¹

Search for Heavy Top t'→Wq

- Motivated in various BSM: Little Higgs model with t-parity, "Beautiful Mirrors" model
- > EWK precision data don't exclude fourth generation.
- > Use Lepton+Jets final state
- > Two-variable search:
 - Reconstructed top mass
 - H_T (total transverse energy)

- > Search for $H^+ \rightarrow cs$
 - In the MSSM, predicted for charged Higgs in low tan β around unity.
 - Assume $BR(H^+ \rightarrow cs) = 1$

> Template fit to the dijet invariant mass in Lepton+Jets channel

• No evidence for H⁺ signal in data

June 26, 2008

M. Datta, FNAL

Search for Beyond the SM Physics With Single Top Sample

W'-like Resonances

Many theories predicts W' : massive W-like boson (PRD 10, 275 (1974); PRD 11, 566 (1975); PLB 385, 304 (1996) etc.)

- > Search for resonant tb production: $W' \rightarrow tb$
 - LH couplings: D0 include interference with SM W in the signal model
 - RH couplings: decay to $v_R l/qq$ depending on mass of v_R

> Set 95% exclusion limits on W' production and it's coupling to fermion

Anomalous Wtb Coupling in Single Top Production

> Assume single top production proceeds exclusively through W exchange, $|V_{td}|^2 + |V_{ts}|^2 \ll |V_{tb}|^2$ and CP conversation.

$$L = -\frac{g}{\sqrt{2}} V_{tb} \overline{b} \left\{ \gamma^{\mu} \left(f_1^{\ L} P_L + f_1^{\ R} P_R \right) + \frac{i \sigma^{\mu\nu} q_{\nu}}{M_W} \left(f_2^{\ L} P_L + f_2^{\ R} P_R \right) \right\} t W_{\mu}^- + h.c.$$

In the SM $f_1^{\ L} = 1, \ f_2^{\ L} = f_1^{\ R} = f_2^{\ R} = 0$

> Look at two couplings at a time, assuming other two as negligible

- Allow the SM coupling f_I^L and any one of the three non-SM couplings
 - Three cases considered: $(L_1, L_2), (L_1, R_1), (L_1, R_2)$
- > Use single top selection with boosted decision tree (BDT)
 - Described in previous talk
- > Use lepton P_T to distinguish signals with different couplings
 - All the BDT variables used in the single top search are also used

о.9 fb-1 Anomalous Wtb Coupling (cont')

Summary and Outlook

- > Top quark properties are currently being studied at Tevatron
 - Top mass measured in different final states and using different methods
 - Mass measured to 0.8% precision
 - Good consistency among all measurements
 - Other properties of top quark are studied and new physics searches are performed using top sample
 - Almost all the measurements are limited by statistics at present
 - Increasing data from Tevatron will further help reveal the true nature of top quark ⇒ Expect 6-8 fb⁻¹ by the end of Run II
- > LHC will open up a new era of Top quark physics \Rightarrow Top factory
 - Top is a standard candle, tool for calibrating JES, b-tagging
 - All the properties measurements and new physics searches would enter a new level of precision and sensitivity
 - Understanding of systematic uncertainties would become crucial
- > Tevatron's top physics program and understanding of systematic effects will continue to play a significant role for years to come