W and Z as probes at the Tevatron

- Probes of the apparatus.
- Probes of the proton.
- Probes of the electroweak force.
- Other probes discussed elsewhere:
 - Тор
 - Higgs
 - New physics searches

T. Bolton (Kansas State/D0) PIC-2008 Perugia, ITA

1

Apologia

- I define "electroweak physics" as "the physics that the CDF and D0 electroweak physics group do."
- I will not systematically list here all analyses or all measurements that go with each analysis.
- I will not be systematic here with citations. All missing details and appropriate references are available on the CDF and D0 public web pages.

All Tevatron physics depends on the Z

- Calorimeter+tracker energy scale and resolution.
- e, μ, τ ID efficiencies.
- Trigger efficiencies.
- Tracking efficiencies.

Example: Tag and Probe

- Z mass constraint allows selection of clean sample of events with one e/μ well measured (the "tag") and the other required to pass relatively loose requirements (the "probe").
- The relative efficiency for any tighter single track requirement can then be measured from data via ε~ "tight" / "loose".
- Consequence: many Tevatron "systematic" errors go as 1/√Nz.

Common features

- High field magnetic trackers with silicon vertexing
- electromagnetic and hadronic calorimeters
- muons systems

Competitive Advantages

- CDF has much better momentum resolution in the central region and displaced track triggers at Level 1
- D0 has more calorimeter segmentation, silicon disks, and a far forward muon system.

26 June, 2008

Rates: $\sigma \times \mathcal{L} \times \varepsilon$

Collider Run II Integrated Luminosity

4500.00 60.00 Tevatron Run II pp at \sqrt{s} = 1.96 TeV/c² 4000.00 Cross-Section [pb] 50.00 osity (pb⁻¹) What's in 1 fb⁻¹ of 3500.00 W 10⁴ pp collisions 40.00 3000.00 Ζ at $\sqrt{s} = 1.96$ TeV? 2500.00 SM Expectation 30.00 σ 10³ 2000.00 \approx 5,000,000 $W \rightarrow l\nu$ Integrate $500,000 Z \rightarrow H$ 20.00 1500.00 \approx Weekly 10⁴ Wγ $32000 W\gamma \rightarrow l\nu\gamma$ n 1000.00 \approx Zγ 10.00 $8000 Z\gamma \rightarrow II\gamma$ \approx 500.00 $3700 WW \rightarrow l\nu jj$ \approx 0.00 0.00 **10 ⊨** ww 5 24 43 62 81 100 157 195 214 233 252 271 290 309 328 347 366 $550 WW \rightarrow I l \nu \nu$ 176 \approx Week # WZ 50 WZ $\rightarrow III\nu$ (Week 1 starts 03/05/01) \approx ZZ Weekly Integrated Luminosity --- Run Integrated Luminosity 1⊧ $6 ZZ \rightarrow IIII$ \approx Collider Run II Peak Luminosity where l=e or μ 3.20E+32 3.20E+32 M_H=160 10 w Ζ Wγ Zγ WW WZ ZZ $H \rightarrow WW$ 2.80E+32 2.80E+32 2.40E+32 .40E+32 Current situation: ~ 1 pb • osity 2.00E+32 .00E+32 Aver .60E+32 👸 nm 1.60E+32 sensitivity after BF, ϵ Peak .20E+32 🛓 1.20E+32 factors are incorporated. 8.00E+31 8.00E+31 4.00E+31 4.00E+31 0.00E+00 0.00E+00 0/01/07 1/01/08 04/01/08 Q 04/01/ Peak Luminosity • Peak Lum 20x Average 26 June, 2008 T. Bolton (Kansas State/D0) 6 PIC-2008 Perugia, ITA

Typical Selection Criteria

- Selection: usually W→ℓv or Z→ℓℓ, ℓ=e,µ.
- Typical electron criteria:
 - p_T>20 GeV.
 - Shower shape.
 - Isolation.
 - Matching track (central).
- Typical muon criteria:
 - p_T>20 GeV.
 - Muon detector track.
 - Central track match.
 - Isolation.
- Typical missing E_T >20 GeV.
- More leptons→looser cuts.

- Selection efficiencies at all levels are usually measured in data via "tag and probe" methods.
- Most analyses use MC simulation only to correct for signal geometric and kinematic acceptance.
- Detector simulations are highly tuned to match control data samples (often Z→健).

Typical backgrounds

- Electrons: jet/photon mis-ID.
 - ~few % central
 - To ~10% forward
- Muons: jet μ from π /K/c/b
 - ~few % central.
 - to ~10% forward.
- Missing $E_T(v)$
 - QCD multi-jets (c,b).
 - Z with missing ℓ .
 - Intrumental.

- All backgrounds from jet→lepton and instrumental effects are measured with data.
- Purely leptonic backgrounds are estimated by MC (usually PYTHIA):
 - Example: $Z \rightarrow \tau \tau \rightarrow eevvvv$ background to $Z \rightarrow ee$.
- Small backgrounds from top quarks estimated from combination of MC and data techniques.

Probing the proton with W/Z

- The P_{\parallel} = of the W/Z probe PDF.
 - Z rapidity
 - W charge asymmetry
 - − W $\rightarrow \ell_V$ charge asymmetry
- Kinematics reminders
 - $P_{\parallel} = \sqrt{P_{T}^{2} + M^{2} \times \sinh(y)} = \sqrt{s/2(x_{1} x_{2})}$
 - $E = \sqrt{P_T^2 + M^2 \times \cosh(y)} = \sqrt{s/2(x_1 + x_2)}$
 - − High |y| ← → high $|\eta|$. ← → high|x|

- Basic ideas: W⁺ production driven by ~u_p(x₁) ⊗d_p(x₂). W⁺ tend to follow proton. V-A decay cause ℓ⁺ to follow antiproton.
- Asymmetry measurements form robust observables, both experimentally (small backgrounds, weak model dependencies) and theoretically (NLO in pQCD).
- CDF measures $A_W(y_W)$.
- D0 measures $A_{\mu}(\eta_{\mu})$.

CDF W \rightarrow ev charge asymmetry

- Missing v leaves 2-fold ambiguity in y.
- CDF uses known production⊗decay matrix elements to weight hypotheses.
- Result is first direct measurement of W asymmetry.

CDF W \rightarrow ev comparison to theory

- Data are consistent with CP symmetry.
- Combine: A(y) = -A(-y).
- To |y|~2.8, measurements are superior to NNLO predictions with CTEQ6M PDF.
- Implies that data will better constrain PDF.

D0 W-> $\mu\nu$ lepton asymmetry

- Similar story in lower statistics complementary mode:
- For much of range, experimental; precision comparable to theory.
- Expect improved PDF constraints.

Z rapidity distribution

- Basic ideas:
 - Measurement here probes $\sim u_p(x_1) \otimes u_p(x_2) + d_p(x_1) \otimes d_p(x_2)$.
 - No problem reconstructing boson kinematics.
- D0 measures the shape $(1/\sigma)d\sigma/dy$.
- CDF measures measures the shape and level of $d\sigma/dy$, also permitting a total cross section determination.

D0 Z rapidity shape measurement

- Statistics dominated measurement over all |y|.
- Good agreement with NNLO QCD+MRST.
- Precision comparable to PDF uncertainties.

CDF Z rapidity, 5× more data

- 0.15M Z, careful systematic control through overlapping detector samples allow high precision to |y|=3.
- Excellent agreement between y<0 and y>0 sample allows CPfolding.

CDF Z-rapidity PDF discrimination

- dσ/dy shape significantly favors CTEQ6.1M PDF over MRST using NLO QCD.
- NNLO predictions similar to NLO with CTEQ6.1M.

QCD probes: σ_{TOT} and $d\sigma/dpT$

- Total cross section, basic ideas:
 - Following the "more inclusive = better" rule, these should provide high quality QCD tests; the reality of ~6% luminosity uncertainties prevents this.
 - "Flip" point of view:
 - σ_{TOT} measurements provide important "reality checks" on Higgs and other new physics searches, e.g. $\sigma_{TOT} \times BF(Z \rightarrow \tau \tau)$, $\sigma_{TOT}(WW), \sigma_{TOT}(ZZ)$.
 - A better luminosity determination? Both CDF and D0 effectively normalize to the total inelastic proton-antiproton cross section. Why not normalize to $\sigma_{TOT}(Z)$?

CDF Z \rightarrow ee total cross section

- σ ×BF = 258.2±0.7±4.8 pb (excluding luminosity uncertainty).
- Total experimental error is <1/3 luminosity error.

D0 $Z \rightarrow \tau \tau$ results

- $\tau\tau$ observed at high statistics in three modes with good S/B.
- Observation is consistent with SM $Z \rightarrow \tau \tau$.
- $\sigma \times BF = 247 \pm 8_{STAT} \pm 13_{SYS} \pm 15_{LUMI}$ pb. Total experimental uncertainty again comparable to luminosity uncertainty!

Z-boson Z p_T distribution from D0

• Basic ideas:

 $\frac{d^2\sigma}{dp_T^2 dy} \propto \frac{\alpha_w \alpha_s}{p_T^2} \ln(\frac{Q^2}{p_T^2}) \to \infty as \ p_T^2 \to 0$

- Low p_T Z production calculations involve "large logs". Need to re-sum these terms, which requires a model to handle nonperturbative contributions. The model is implemented as the MC event generator **RESBOS**.
- High p_T Z production should allow a direct test of pQCD. This test can be performed to NNLO.
- The inclusive Z p_T distribution provides an empirical inclusivity constraint to "V+jet" models like SHERPA and ALPGEN.

$(1/\sigma)d\sigma/dpT$ from D0

- At low p_T , data are consistent with RESBOS model.
- At high p_T, data are consistent in shape with NNLO QCD, but data are ~1.25× prediction.

Electroweak Probes

- Z forward-backward asymmetry
- W mass and width
- Di-boson production
- Context:
 - The LEP/SLC precision EW physics program was very good.
 - Improving on LEP precision is a daunting task.
- A better view:
 - The Tevatron *tests* LEP-driven prediction.
 - The Tevatron *extends* tests to higher \sqrt{s} .
 - The Tevatron allows observation CC and NC processes.
- HERA shares many of these complementary features.

$Z \rightarrow$ ee forward-backward asymmetry at D0

- Basic idea: A_{FB} probes (u_V,d_V,u_A,d_A)⊗(e_V,e_A); electron terms are essentially known "exactly" at Z-pole.
- (u,d) couplings least-probed at LEP/SLD.
- Some hints of discordance with SM from (u,d) tests in vN scattering at NuTeV.
- Sensitivity to new physics at high mass.

26 June, 2008

- Good agreement with SM predictions over full range for A_{FB}.
- Effective $\sin^2\theta_W = 0.2327 \pm 0.0018_{STAT} \pm 0.0006_{SYS}$.
 - Not competitive with world average.
 - But comparable to other determinations with u,d fermions.
- Measurement is currently statistics-limited.

26 June, 2008

Precision W mass from CDF

$$M_W^2 \left(1 - \frac{M_W^2}{M_Z^2} \right) = \frac{\pi \alpha}{\sqrt{2}G_F} \left(\frac{1}{1 - \Delta r} \right)$$

- Basic ideas:
 - $M_W = M_{W0} + A \times M_{top}^2 + B \times \ln(M_{Higgs}/M_Z)$
- "High M_W, low M_{top}" drives "low M_{Higgs}".
- M_{Higgs} constraints will be sharpened most by improved M_W.

T. Bolton (Kansas State/D0) PIC-2008 Perugia, ITA

26

CDF W-mass, towards a 0.06% measurement

- CDF achieves this with extensive calibrations using Z, J/ Ψ , and Y data with its calorimeter and tracker.
- Calibrations, along with a detailed production model, are used to make templates for $p_{T,\ell}$, transverse mass M_T , and missing E_T distributions that are then compared to data to achieve a best fit.

CDF W-mass M_T fits

- Good agreement between e and μ modes.
- Also good agreement with $p_{T,\ell}$, missing E_T fits in both modes.

CDF W-mass result

- CDF has performed the single most precise MW measurement.
- CDF confirms the low M_{Higgs} interpretation of precision EW tests.

26 June, 2008

CDF W width

- While M_w is sensitive to the peak of the M_T distribution, Γ_w is sensitive to the tail.
- Using many methods from the W-mass measurement, CDF obtains the best single direct measurement: $\Gamma_{W} = 2032 \pm 45_{STAT} \pm 57_{SYS}$ MeV, vs. SM prediction of Γ_{W} = 2091 ± 2 MeV.

CDF W-mass with 12×more data

- Calibrations demonstrated to work with higher luminosity running.
- Uncertainties scaling as expected with statistics.
- $\Delta M_W = 25 \text{ MeV soon?}$

26 June, 2008

- Basic idea I, cross sections: verify SM predictions to ~10% (γW,γZ), ~25% (WW), ~50% (WZ,ZZ).
 Demonstrate ability to see Higgs-like signals (WW,ZZ).
 In situ γ calibration source (γZ).
- Basic idea II, triple gauge couplings (TGC): search for new physics effects. Anomalous TGC generically boost cross sections over SM predictions and harden spectra of final state bosons.

26 June, 2008

- Basic idea: Generalize SM Lagrangian to include all possible terms consistent with SM symmetries. Will not give detailed exposition here.
- Expansion introduces ATGC parameters $\lambda^{(i)}_{V1,V2,V3}$. These will violate unitarity unless cut off at large parton \sqrt{s} . Usual prescription is with dipole form-factor with cut-off parameter $\Lambda \sim 1-2$ TeV.
- As sensitivity increases, $\lambda^{(i)}_{V1,V2,V3}$ can be probed for larger Λ .
- Typical sensitivites are $|\delta\lambda^{(i)}_{V1,V2,V3}| < 0.1$, where 1.0 would be comparable to a SM coupling strength for an allowed channel.
- Several SM couplings are absent, e.g., ZZZ, ZZγ, Zγγ,

26 June, 2008

$W\gamma$ from D0

- pT,γ distribution shows effects of ATGC.
- Limits in λ_γ (~ λ⁽¹⁾_{WWγ}) vs κ_γ (~λ⁽²⁾_{WWγ}) plane. Note κ_γ=1 is SM.

T. Bolton (Kansas State/D0) PIC-2008 Perugia, ITA 34

The radiation-zero in Wg production at D0

- An interesting QM interference effect produces a distinct dip in the distribution of η_{ℓ} - η_{ν} .
- D0 observes this dip with a bit less than 3σ significance.
- ATGC effects would fill in the dip, but they are better probed through the p_{Tv} distribution.

26 June, 2008

WZ production at CDF

- No evidence for ATGC effects in Z pT distribution.
- Limits on three pairs of ATGC.
- Tevatron complementarity: access to CC couplings differentiates WW γ and WWZ parameters.

The $Z\gamma$ final state at CDF

- One can clearly observe "initial state" and "final state" radiation.
- Total rate and kinematics consistent with SM.

Richness of Z_y final state

- γp_T distribution \rightarrow ATGC.
- γZ mass distribution \rightarrow search for $X \rightarrow \gamma Z$ resonance.
- $\neg \gamma \ell \ell$ mass at Z-pole \rightarrow calibration photons.
- $\gamma \ell$ mass distribution \rightarrow excited lepton searches $\ell^* \rightarrow \ell \gamma$.

ZZ→all charged leptons at CDF

- CDF observes this channel with 4.4σ significance using 4ℓ (3 candidates) and 2ℓ2v (5 candidates) modes.
- Almost all significance is from nearly background-free 4*l* mode.

- First challenge is to suppress huge potential background from Z+missing E_T production.
- Use of dilepton transverse momentum perpendicular to thrust axis achieves effective separation
- Neural network used to separate ZZ from WW production.

26 June, 2008

CDF WW+WZ→ℓ∨jj

- Very different EW analysis with low S/B.
- "Higgs-style" multivariate analysis applied to a "SM calibration".
- Can in principle probe ATGC as large BF compensate for S/B.

CDF WV→ℓvjj result

- Encouraging results consistent with SM.
- W/Z→jet jet still a real challenge, but one that must be overcome to get to the Higgs!

Scorecard: W and Z as probes

- Probes of the apparatus.
 - Many systematic errors continue to shrink as Z-bosons are accumulated, keeping much of the Tevatron physics program statistics-limited.
- Probes of the proton.
 - Precision of W-asymmetry and Z rapidity distributions demands updated PDF sets.
- Probes of QCD
 - Precision cross section and $\ensuremath{p_{\text{T}}}$ distribution measurements push for improved theory.
 - Absolute normalization to Z nearing feasibility.
- Probes of the electroweak force.
 - Best W mass measurements confirm low M_{Higgs} prediction.
 - More SM check marks from A_{FB} , Γ_W , ATGC searches.
 - Observation of all diboson modes demonstrates ability to pull out small cross sections.

Onwards!

26 June, 2008

T. Bolton (Kansas State/D0) PIC-2008 Perugia, ITA

44