

Top Quark Cross Sections

Frédéric Déliot

CEA-Saclay

On behalf of the CDF and DO Collaborations

XXVIII Physics In Collision Perugia, 26 June 2008

Outline

- Introduction
- The Tevatron, the CDF and D0 Detectors
- Top Production at Hadron Colliders
- Pair Production Cross Section
 - $\rightarrow t\bar{t}$ Decay Channels
 - \rightarrow Results
- Single Top Cross Section
 - \rightarrow Search Strategy
 - \rightarrow Results
- Conclusion and Perspectives

What Make The Top Quark So Special?

- That's the « youngest » quark of the Standard Model

 → discovered in 1995 during the Run I of Tevatron
 → many of its properties need to be studied in detail
- That's the heaviest elementary particle

 \rightarrow ~ 40 times heavier than its weak isospin partner, the b quark

- ightarrow Yukawa Coupling to the Higgs ~ 1
- \rightarrow Large contribution in virtual fermionic loops
- → Only quark to decay before hadronizing:
 « nude » quark

The top quark physics is a rich, still developing field
 → The top quark is currently only directly produced at Tevatron
 F. Déliot, PIC 26-June-2008

The Tevatron

- $p\bar{p}$ collider at $\sqrt{s} = 1.96$ TeV
 - \rightarrow 36x36 bunches, bunch crossing every 396 ns
 - \rightarrow 2 experiments : CDF and DO
- Data taking periods:
 - \rightarrow Run I (1993-1996): $\mathcal{L}_{delivered} \sim$ 120 pb⁻¹ / experiment
 - \rightarrow Run IIa (2002 March 2006): $\mathcal{L}_{\rm delivered}$ ~ 1.5 fb^-1
 - \rightarrow Run IIb (August 2006 2009/2010): $\mathcal{L}_{delivered}$ ~ 6 to 8 fb^-1

Typical data taking efficiency: > 85%

F. Déliot, PIC 26-June-2008

The RunII CDF and D0 Detectors

• Top physics utilizes every subdetector:

- \rightarrow tracking (vertexing, momentum measurement, b tagging)
- \rightarrow calorimetry (jets, electron, missing transverse energy)
- \rightarrow muon detection

Pair Production tt Cross Section

Top Quark Pair Production

Strong Interaction Production Mode:

Pair ($t\bar{t}$) production: dominant at hadron collider

Why Do We Want to Measure the tt Cross Section ?

- $\sigma(t\bar{t})$ is an inclusive quantity that allows:
- \rightarrow test the SM :

compare the experimental measurement with the QCD NLO prediction

- \rightarrow extract the top quark mass comparing theory with measurement
- \rightarrow probe new physics :
 - anomalous tī production rate
 - compare cross-sections in different top decay channels

 \rightarrow background for Higgs and new phenomena searches

How Do We Measure the (tī) Cross Section ?

tt Production Final States

- Top Decay in the Standard Model: BR($t \rightarrow Wb$) ~ 100 %
- Final State driven by the W decay modes

b Jet Tagging

 utilize b-jets special properties to separate them from light/gluon jets: (reduce multijet and W+jets bkg)

- \rightarrow long b-hadrons decay length (c τ ~0.5mm)
- \rightarrow high b quark mass compared the light quarks
- \rightarrow b-hadrons semileptonic decay: b $\rightarrow \mu \nu c$ Vertex Tagging
- 3 main b-tagging algorithms:
 - 1) impact parameter based
 - 2) secondary vertex reconstruction
 - 3) soft lepton tag
- D0: 1 & 2 combined into a neural network (NN):
 - $\rightarrow \epsilon \approx 55\%$ for fake rate ~1%
- CDF: 2 & NN jet separator

Lepton + jets Channel

 \rightarrow topological: likelihood using kinematic variables

(aplanarity, sphericity, H_T , angles, invariant masses, ...)

 \rightarrow b-tagging

Background:

 \rightarrow W + jets : MC, normalized to data (before b-tagging)

```
\rightarrow non-W (multijets) : fake lepton, estimated from data
```

```
\rightarrow diboson, Z+jets, single top : MC
```


Lepton + jets With Soft Lepton Tagging

data: 248, expected bkg: 87 ± 6 data: 121, expected bkg: 52 ± 3 $\sigma(t\overline{t}) = 8.7 \pm 1.1 \text{ (stat)} \pm 0.9 \text{ (sys)} \pm 0.6 \text{ (lumi) pb}$ $\sigma(t\overline{t}) = 7.8 \pm 2.4 \text{ (stat)} \pm 1.5 \text{ (sys)} \pm 0.5 \text{ (lumi) pb}$ $(M_{top} = 175 \text{ GeV})$

dominant systematics: (luminosity : 6%)

- $\rightarrow \ell$ -tag acceptance/ ϵ : 8-15 %
- $\rightarrow \ell$ -tag fake rate: ~ 5%
- \rightarrow W+HF prediction: ~4%

Lepton + jets with Kinematic Discriminant

Likelihood discriminant

Neural Network

Fit the discriminant output in all channel to extract the cross section

Top Mass Extraction From the Cross Section

interest

 \rightarrow top mass in a well defined renormalization scheme

- compare cross-section measurement with theory computation
 - → for each Mtop, construct a joint likelihood = theory likelihood (scale and PDF uncertainty)
 - x experimental likelihood (total uncertainty)

 \rightarrow integrate over the cross-section

$$M_{top}$$
 = 170 \pm 7 GeV

in agreement with the world average value:

 M_{top} = 172.6 \pm 1.4 GeV

Simultaneous R and Cross Section Measurement

- Previous measurement assumed $Br(t \rightarrow Wb)=1$
- \rightarrow fit simultaneously and R and $\sigma(t\bar{t})$ w/o this assumption

$$R = \frac{Br(t \to Wb)}{Br(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2}$$

- channels: 0, 1, 2 b-tag, \geq 4 jets
 - σ(tt) = 8.2^{+0.9}-0.8 (stat+sys) ± 0.5 (lumi) pb R = 0.97^{+0.09}-0.08 (stat+sys) Correlation: -58%

Dilepton Channel

- complementary strategy:
- \rightarrow lepton + isolated track : need b-tagging to enhance purity
- Background:
 - \rightarrow Z + jets : Z \rightarrow $\ell\ell$ +fake E/_ : MC or data
 - \rightarrow fake lepton (multijets) : estimated on data
 - \rightarrow diboson (WW,WZ) +jets : MC

Dilepton Channel Results

1.05 fb⁻¹: {t + t-isolated track (w/ btag): σ(tt) = 6.2 ± 0.9 (stat) ± 0.8 (syst) ± 0.4 (lumi) pb (M_{top} = 175 GeV)

- dominant systematics:
 - \rightarrow Jet energy scale : ~ 3%
 - \rightarrow MC normalization : ~ 3%
 - \rightarrow others of the order of 2-3%

tag):2 fb⁻¹: $\ell\ell$ (w/o btag): $\Delta\sigma/\sigma \sim 17\%$ 0.4 (lumi) pb $\sigma(t\bar{t}) = 6.8 \pm 1.0 (stat) \pm 0.4 (sys) \pm 0.4 (lumi) pb$ 2 fb⁻¹: $\ell\ell$ (w/ btag): $\sigma(t\bar{t}) = 9.0 \pm 1.1 (stat) \pm 0.7 (sys) \pm 0.5 (lumi) pb$ 1.1 fb⁻¹: ℓ +track (w/o btag): $\sigma(t\bar{t}) = 8.3 \pm 1.3 (stat) \pm 0.7 (sys) \pm 0.5 (lumi) pb$ -3%1 fb⁻¹: ℓ +track (w/ btag): $\sigma(t\bar{t}) = 10.1 \pm 1.8 (stat) \pm 1.1 (sys) \pm 0.6 (lumi) pb$ F. Déliot, PIC 26-June-2008

l+jets/ll Cross Section Ratio

• using the measured {+jets/{{ cross sections:

$$R_{\sigma} = \frac{\sigma_{t\bar{t}}(\ell + jets)}{\sigma_{t\bar{t}}(\ell\ell)}$$

→ in the SM: $R_{\sigma} = 1$ → deviation from 1 sensitive to the W disappearance : B(t → Xb) ex: t → Hb with H⁺ → cs̄ ⇒ R>1

using the Feldman Cousins method:

 $R_{\sigma} = 1.21 + 0.27_{-0.26}$ (stat+sys)

→ assuming $m_{H\pm}$ =80 GeV and Br(H[±]→ cs)=1 Br(t→Hb) < 0.35 @ 95% CL

Lepton + τ Channel

final state with taus: challenging to identify

- \rightarrow challenging to identify
- → but most sensitive channel to new physics ex: MSSM: if $m_{H_{+}} < m_{t} : t \rightarrow H^{+}b$, $H^{+} \rightarrow \tau v$
- tau identification:
 - \rightarrow hadronic tau decays :

Lepton + τ Channel Results

background estimation:

- \rightarrow W+jets: normalized to data
- \rightarrow multijet: from same sign events
- \rightarrow other from MC

Δσ/σ ~ 28%

dominant systematics: (luminosity : ~ 6%)

- \rightarrow bkg/MC statistics : ~ 20%
- \rightarrow b-tagging : ~ 6%
- \rightarrow tau fake rate : ~ 4%

Full Hadronic Channel

Selection:

 $\rightarrow 6 \le Njet \le 8$

 \rightarrow signal/bkg separation: using a neural network (jet invariant masses, sphericity, aplanarity, ...)

• Background:

 \rightarrow multijets : estimated on data (tag rate in the N_{jet}=4 bin)

Full Hadronic Channel Results

 $\sigma(t\bar{t}) = 8.3 \pm 1.0 \text{ (stat)} + 2.0 \text{ (sys)} \pm 0.5 \text{ (lumi) pb} \text{ (M}_{top} = 175 \text{ GeV)}$

• dominant systematics: (luminosity : ~ 6%) $\Delta\sigma/\sigma \sim 25\%$

$$ightarrow$$
 Jet energy scale : ~ 16%

 \rightarrow b-tagging : ~ 7%

Summary of tt Cross Section Measurements

Perspectives

- \rightarrow better current result: $\Delta\sigma(t\bar{t})/\sigma$ ~ 11 % (~ theory uncertainty)
- ightarrow systematic dominated (ℓ +jets, full hadronique)
- \rightarrow perspective: end of runII

a 6 % uncertainty could be achieved (need to improve systematics)

 \rightarrow LHC: 5-10% with 10 fb⁻¹ (luminosity uncertainty 5%-10%)

Single Top Quark Cross Sections

 \rightarrow Theoretical prediction: M_{top} = 175 GeV (CTEQ5M1) Sullivan, Phys. Rev. D70:114012,2004, NLO

 Tevatron: σ = 2.9 pb ± ~ 14 % (typically: for 1 fb⁻¹ , ~ 50 evts)

 LHC:
 σ = 315 pb ± ~ 20 %

Why Do We Want to Measure the Single Top Cross Section ?

- Single top cross section:
- → predicted by the standard model: need to measure it
- → direct measurement of V_{tb} ($\sigma \propto |V_{tb}|^2$) test the unitarity of the CKM matrix
- → sensitive to non standard process:
 W' or charged Higgs, FCNC: tug, ...
 anomalous Wtb coupling: V+A
- \rightarrow background for Higgs searches: same final state as WH \rightarrow Wbb
- Difficult measurement:

need multivariate techniques

Event Selection and Background Estimation

• Event Selection:

- \rightarrow one isolated electron or muon (Pt>15-20GeV)
- \rightarrow E/_T > 15-25 GeV
- \rightarrow 2, 3 or 4 jets with 1 or 2 b-tag (Pt>15-25GeV)

Background estimation:

 \rightarrow from MC: diboson, Z+jets and tt (+ single top)

\rightarrow from MC and Data:

kinematics and flavor composition from MC

- (+ additional scale factor for Wbb and Wcc)
- W+jets normalized from data before b-tagging
- → from data: multijets using sideband or non isolated lepton sample

Systematic Uncertainties

- systematics affect the normalization and/or the shapes
- \rightarrow correlation between channels taken into account

Source of Uncertainty	Size		Syst. Uncertainty 🕕	Rate	Shape
	100/		Jet Energy Scale	016%	\checkmark
rop pairs normalization	10%		Initial state radiation	011%	\checkmark
W+iets & multijets normalization	18-28%		Final state radiation	015%	\checkmark
	10 2070		Parton Distribution Function	23%	\checkmark
Integrated luminosity	6%		MC Generator	15%	
Trianan waadaling	2 60/		Event Detection Efficiency	09%	
i rigger modeling	3-6%		Luminosity	6 %	
Lepton ID corrections	2-7%		NN Flavor-Separator		$\mathbf{\nabla}$
			Mistag model		\checkmark
Jet modeling	2-7%		Q2 scale in ALPGEN MC		\checkmark
Other small components	Eou/ %		Input variable mismodeling		\mathbf{N}
Other small components	Few 70		Wbb+Wcc normalization	30%	
Jet energy scale	1–20%		Wc normalization	30%	
	0 4004		Mistag normalization	1729%	
l ag rate functions	2–16%		Top-pair normalization & mtop	23%	Ŋ

• the cross section uncertainty is dominated by the statistical uncertainty

Multivariate Techniques

DO Results

- First evidence for single top production in December 2006: PRL 98, 181802 (2007)
- 3 analyses: Boosted decision tree, Bayesian Neural Network, Matrix Elements (0.9 fb⁻¹) combined s and t channel searches (assume SM ratio between them)

<i>tb+tqb</i> Results DØ PRD 0.9 fb ⁻¹				
	DT	BNN	ME	
Expected significance	2.1 σ	2.2 σ	1.9 σ	
Observed significance	3.4 σ	3.1 σ	3.2 σ	
Cross section	4.9 ^{+1.4} pb	4.4 ^{+1.6} pb	4.8 ^{+1.6} _{-1.4} pb	
(M _{top} = 175 GeV)				

CDF Results

- Large dataset analyzed : 2.2 fb⁻¹
- 4 analyses: Likelihood function, Neural Network, Matrix Elements Boosted Decision Tree (new)

CDF preliminary

0.5

2.2 fb⁻¹

Events

80

60

40

20

0

-1

-0.5

0

Boosted Decision Tree Output

<i>tb+tqb</i> Results	CDF preliminary 2.2 fb ⁻¹			
	LF	NN	ME	BDT
Expected significance	3.4 σ	4.4 σ	4.5 σ	4.6 σ
Observed significance	2.0 σ	3.2 σ	3.4 σ	2.8 σ
Cross section	1.8 ^{+0.9} pb	2.0 ^{+0.9} _{-0.8} pb	2.2 ^{+0.8} _{-0.7} pb	1.9 ^{+ 0.8} - _{0.7} pb
(M _{top} = 175 GeV)				

Combining the Results

• CDF: Neural network optimized using neuroevolution of augmentation topologies (NEAT)

• DO: Best Linear Unbiased Estimate (BLUE) method

tb+tqb Combined Results			
	DØ PRD 0.9 fb ⁻¹	CDF prelim. 2.2 fb ⁻¹	
Expected significance	2.3 σ	5.1 σ	
Observed significance	3.6 σ	3.7 σ	
Cross section	4.7 ± 1.3 pb	2.2 ± 0.7 pb	

CDF and DØ tb+tqb Cross Section

Separate Measurements of s and t Channels

• DO: s+t channel decision tree where the s and t channel cross sections are allowed to float

• CDF: Neural network output templates for s and t channels separately

2jet 1btag: 2D NN discriminant

Measurement of the CKM Matrix Element V_{tb}

• Wtb vertex:

$$\Gamma^{\mu}_{Wtb} = -\frac{g}{\sqrt{2}} \underbrace{V_{tb}}_{V} \gamma^{\mu} \left[f_1^L P_L + f_1^R P_R \right]$$

- \cdot Extraction of V_{tb} from the cross section measurement: $\sigma \propto |V_{tb}|^2$
- Assumptions:
 - \rightarrow single top production with W interaction (no FCNC, ...)
 - \rightarrow SM top decay: $|V_{td}|^2 + |V_{ts}|^2 \leftrightarrow |V_{tb}|^2$
 - \rightarrow pure V-A: f₁^R=0
- No assumption on the number of quark families or CKM unitarity

Summary of Single Top Cross Section Measurements

- Challenging measurements
- Both DO and CDF report evidence for single top production:

D0 (0.9 fb⁻¹): σ (s+t channel) = 4.7 ± 1.3 pb (3.6 σ significance)

CDF (2.2 fb⁻¹): σ (s+t channel) = 2.2 ± 0.7 pb (3.7 σ significance) (M_{top} = 175 GeV)

Perspectives:

LHC experiments will need ~ 10 $\rm fb^{-1}$ to see the t-channel and to discover the Wt channel. The s-channel will be more difficult.

10

Conclusion

• At Tevatron Run II, top physics has entered the precision area.

 \rightarrow statistics is not the limiting factor anymore for the tt¯ cross-section measurements (ℓ +jets, full hadronique) : $\Delta\sigma(t\bar{t})/\sigma$ ~ 11 %

Test of the Standard Model:

- $\rightarrow t\bar{t}$ cross section in all the possible channels
- \rightarrow evidence for single top (>3 σ)
- The Tevatron will deliver 6-8 fb⁻¹ by 2009/2010
 - \rightarrow dilepton $t\bar{t}$ cross section limited by systematics
 - \rightarrow work on reducing systematics
 - \rightarrow single top discovery (s and t channels)
 - \rightarrow surprises in the top sector?

see next talk for top properties results

