Roberto Pesce

University of Genova, Department of Physics and INFN

ULTRA-HIGH ENERGY COSMIC PARTICLES ASTRONOMY with a space-based experiment ?

XXVIII PHYSICS IN COLLISION - Perugia, June 25-28, 2008

Summary

- Ourrent status of UHECP physics
- Output Detection from space
- The Super-EUSO mission

Current status of UHECP physics

Part I

- very low flux: $(\sim 10^{-3} \text{ particle} \cdot \text{km}^{-2} \cdot \text{sr}^{-1} \cdot \text{yr}^{-1}$ for $E \ge 10^{20} \text{ eV}$)
- origin still unknown

If we want to accelerate a proton to such energies using the LHC magnetic field...

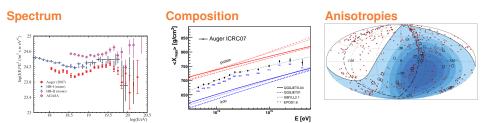
ĥ

Ultra High Energy Cosmic Particles

- very low flux: $(\sim 10^{-3} \text{ particle} \cdot \text{km}^{-2} \cdot \text{sr}^{-1} \cdot \text{yr}^{-1}$ for $E \ge 10^{20} \text{ eV}$)
- origin still unknown

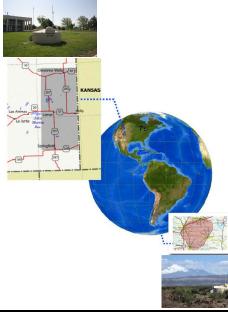
B = 8.3 T R ≈ 4.3 km E = 14 TeV

If we want to accelerate a proton to such energies using the LHC magnetic field...


B = 8.3 T E = 10^{20} eV R ≈ 4 x 10^{6} km ≈ Mercury orbit !

UHECP: what news from the Pierre Auger Observatory ?

see Sergio Petrera's talk


If we can have much more statistics is better! ...

UHECP: what future experiments ?

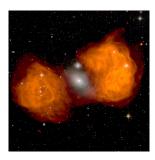
The next step is the PAO North site, that will be built in the near future. Together with the South site we will have:

- full sky coverage
- much more event statistics

What if we want to further increase the event statistics ? We need of a large aperture ($\mathcal{A} \sim 10^6 \text{ km}^2 \cdot \text{sr}$).

Then a challenging space experiment is probably required.

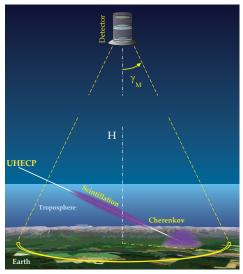
Roberto Pesce



UHECP detection from space

UHECP detection from space: the scientific case

- Stepsion of the measurement of UHECP spectrum beyond $\sim 10^{20} \text{ eV}$
- 2 Detailed map of the UHECP arrival direction, extended to the entire sky
- Identification and localization of compact sources ?
- Study of the spectra of individual sources ?
- Study of the UHECP composition ?



UHECP detection from space: the approach

A large aperture and field of view fast and highly pixelized digital camera.

- Orbital height H
- The apparatus looks downward to the Earth observing
 - near-UV scintillation light
 - diffusely reflected Cherenkov light
- Field of view (FoV) γ_{max}

The required apparatus is made of:

- main optics (pupil diameter D)
- photo-detector (on the focal surface)
 - photo-sensor (efficiency ε)
 - f/e electronics
 - trigger
- atmospheric monitoring system
- calibration system

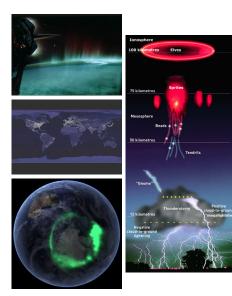
- Instantaneous geometrical aperture Goal: $\mathcal{A} \sim 10^6 \text{ km}^2 \cdot \text{sr}$ (~ $10 \times \text{PAO}$)
- Energy threshold Goal: $E_{\rm th} \sim 10^{19} {\rm eV}$
 - superimposition with PAO data
 - high statistics at low energy to study the detector performances
- Energy resolution Goal: $(\Delta E/E)_{\text{stat.}} \sim 10\% + (\Delta E/E)_{\text{sys.}} \sim 10\%$
- Angular resolution Goal: $\sim 1^{\circ} \div 3^{\circ}$
- Duty cycle (~ 10% 20%) \rightarrow depends on the background

The above parameters are affected by the photon collection capability of the detector. It mainly depends on

- photo-detection efficiency [ε]
- optics aperture [D]
- other efficiency factors (but already close to 1 !)

h

The background from space

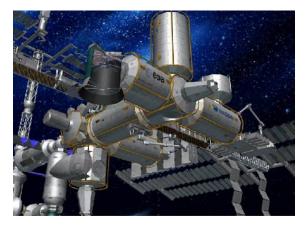

Many sources:

- Atmospheric Nightglow
- Man made lights
- Transient luminous events (lightnings,...)
- 4 Auroras

5 ...

The mean background flux due to nightglow is 300 \div 1500 $ph{\cdot}m^{-2}{\cdot}sr^{-1}{\cdot}ns^{-1}$ and increases in presence of clouds and/or moonlight.

A detailed characterization of background in space-time through a microsatellite mission is mandatory to extract the tiny signal from the huge background.


Part III

The Super-EUSO mission

The EUSO experiment

- 1999: proposal as free-flyer satellite
- 2000: proposal for an accomodation on the International Space Station
- 2001: start of Phase A
- 2004: end of Phase A. EUSO is "frozen" due to financial and programmatical issues

The EUSO heritage

- small optics diameter $D_{EUSO} \sim 2.5 \text{ m}$
- accommodation on the ISS
- fixed orbit
- strong constraints on mass, volume, power, telemetry
- overall photo-detection efficiency $\varepsilon_{EUSO} \sim 0.1$
- limited threshold ($E_{\rm th} \gtrsim 10^{20}~{\rm eV}$)

EUSO was a preliminary exercise. We have to regard it as a beautiful lesson to build a second-generation UHECP space experiment.

The S-EUSO improvement

- big optics diameter D_{S-EUSO} ~ 7 m
- free-flyer satellite
- less constraints on the orbit
- less constraints on mass, volume, power, telemetry
- overall photo-detection efficiency $\epsilon_{S-EUSO} \gtrsim 0.25$
- better threshold ($E_{\rm th} \sim 10^{19} {\rm eV}$)

h

The S-EUSO apparatus (preliminary design)

- catadioptric system (Schmidt telescope)
- lightweight and deployable

mirror diameter	11 m
pupil diameter	7 m
f/#	0.7
granularity at ground	~ 700 m
field of view	$\gamma_{\rm max}\sim 25^\circ$

in-flight

in stowed

Focal surface

- Array of photo-sensor with high photo-detection efficiency
- For example Geiger-Mode Avalanche Photodiodes (GAPD)

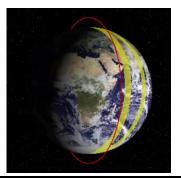
foc. surface diameter	4 m
number of channels	$\sim 10^6$
pixel size	$\sim 4 \text{ mm}$
photo-detection efficiency	0.25
power per channel	2 mW

5 mm × 5 mm GAPD

Atmospheric monitoring

- infrared camera (horizontal cloud coverage)
- backscatter LIDAR ??? (cloud-top altitude)

Roberto Pesce



PIC 2008, Perugia

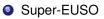
Some remarks about the orbit

- The tuning of the orbit is essential
- A free-flyer satellite has many degrees of freedom
- Possibility to change the orbit during the mission
- E.g. using an elliptic orbit or changing the altitude
 - higher orbit \Rightarrow higher aperture but higher threshold
 - lower orbit ⇒ lower threshold but lower aperture
- No tilting with respect to the nadir is required:
 - A small tilting can improve the geometrical aperture
 - But a large tilting has many disadvantages (atmospheric attenuation,...)

S-EUSO Orbit (preliminary design)

perigee radius	800 km
apogee radius	1100 km
inclination	50°- 60°
period	~ 100 min
ground velocity	~ 7.5 km/s

The long road toward S-EUSO


- A microsatellite mission
 - background characterization in space and time
 - validation of the space approach/apparatus using also ground sources
- Pathfinder missions:

JEM-EUSO (Japan)

TUS (Russia)

see also Piero Spillantini's talk

- A space-based detector for UHECP is very challenging
- It is very important to precisely identify the scientific case on the light of the Pierre Auger Observatory results
- The parameters of the apparatus have to be accurately tuned
- The R&D should start as soon as possible
- It is necessary a large effort from the whole UHECP physicist community
- Necessary some preliminary steps (validation, pathfinders,...)
- Possible framework: ESA Cosmic vision 2015-2025 ???

à

Thank you !

References

- T. Yamamoto et al. Proc. 30th ICRC., 2007. arXiv:0707.2638 [astro-ph].
- M. Unger et al. Proc. 30th ICRC, 2007. arXiv:0706.1495 [astro-ph].
- J. Abraham et al. Astropart. Phys. 29 (2008) 243-256. arXiv:0712.1147 [astro-ph].
- PAO Collaboration. Science 318:938-94 (2007). arXiv:0711.2256 [astro-ph].
- R. Pesce, The detection of UHECP on the Earth and from space, PhD thesis, 2008. www.ge.infn.it/~pesce/phd/PhDThesis.pdf
- A. Santangelo, A. Petrolini, et al. S-EUSO: a proposal for a space-based observatory for UHECP, 2007. http://astro.uni-tuebingen.de/groups/uhe/cv-proposal/
- ESA. Cosmic Vision: Space Science for Europe 2015-2025, 2005.
- J. Adams. Nucl. Phys. Proc. Suppl., 134:15-22, 2004
- P. Mazzinghi et al. Proc. 6th Internat. Conf. on Space Optics, 2006.
- P. Buzhan et al. Nucl. Instrum. Meth., A504:48-52, 2003.
- N. Dinu et al. Nucl. Instrum. Meth., A572:422-426, 2007.
- J. Ninkovic et al. Nucl. Instrum.Meth., A572:454-455, 2007.
- A. Thea et al. Nuc.Phys. B Proc. Suppl. 166 (2007) 223.

ĥ

