V_{us} and lepton universality from K decays at KLOE

Mario Antonelli

LNF-INFN

XXVIII Physics In Collision Perugia

27 June 2008

Unitarity test of CKM: **G**_F universality

$$|\mathbf{V}_{ud}|^2 + |\mathbf{V}_{us}|^2 + |\mathbf{V}_{ub}|^2 \equiv 1$$

 $\alpha + M_{W} + s_{W}$ [e. w. precision tests]

Universality of Weak coupling- $G_F = (g_W/M_W)^2$ $G_F^2 \equiv G_{CKM}^2 = (|V_{ud}|^2 + |V_{us}|^2) G_F^2$

$$G_{F} = 1.166371(6) \times 10^{-5} \text{ GeV}^{-2}$$

$$V_{us} \underline{at \ 0.5\%}$$

$$G_{CKM} = 1.16 \times (04) \times 10^{-5} \text{ GeV}^{-2}$$

G_{e.w.} = 1.1655(12)×10⁻⁵ GeV⁻²

 $G_{\tau} = 1.1678(26) \times 10^{-5} \text{ GeV}^{-2}$

Probe for Physics beyond SM

the second life of \//ool

Kaon high precision observables

$$\begin{split} & \mathbf{K}_{\ell 3} \text{ decays} \\ \text{Vector transition protected against } \mathbf{S}_{\boldsymbol{\ell}}(3) \text{ corrections:}_{Gatto]}^{[Ademollo} \\ & \Gamma(\mathbf{K}_{\ell^{3}(\gamma)}) = \frac{C_{\kappa}^{2} M_{\kappa}^{5}}{192\pi^{3}} S_{EW} \mathbf{G}_{F}^{2} |\mathbf{V}_{us}|^{2} |f_{+}^{\kappa^{0}\pi^{-}}(0)|^{2} \times \\ & \mathbf{V}_{\kappa\ell}(\{\lambda\}_{\kappa\ell}) (1 + 2\Delta_{\kappa}^{SU(2)} + 2\Delta_{\kappa\ell}^{EM}) \\ & \text{with } K \in \{K^{+}, K^{0}\}; \ \ell \in \{e, \mu\}, \text{ and:} \\ & C_{\kappa}^{2} \quad 1/2 \text{ for } K^{+}, 1 \text{ for } K^{0} \end{split}$$

 S_{EW} Universal SD EW correction (1.0232)

Inputs from theory:

 $f_{+}^{K^{0}\pi^{-}}(0)$

 $\Delta_{\mathbf{k}^{\mathbf{p}}}{}^{\mathbf{E}\mathbf{M}}$

Hadronic matrix element (form factor) at zero momentum transfer (t = 0)

 $\Delta_{\mathcal{K}}^{SU(2)}$ Form-factor correction for SU(2) breaking

Form-factor correction for long-distance EM effects

Inputs from experiment:

 $\Gamma(\mathsf{K}_{\ell^{3}(\gamma)})$

Rates with well-determined treatment of radiative decays:

" Branching ratios

" Kaon lifetimes

 $I_{\kappa_\ell}(\{\lambda\}_{\kappa_\ell})$

Integral of dalitz density (includes ff) over phase space:

- K_{e3} : Only λ_{+} (or λ_{+}' , λ_{+}'')
- $K_{\mu 3}$: Need $\lambda_{_{+}}$ and $\lambda_{_{0}}$

[Mariciano] Small uncertainties in f_{κ}/f_{π} from lattice \rightarrow determine V_{us}/V_{ud} Reduced uncertainty from e.m. Structure Dependence corrections

$$\frac{\Gamma(\mathsf{K}_{\mu2(\gamma)})}{\Gamma(\pi_{\mu2(\gamma)})} = \frac{|\mathsf{V}_{us}|^2}{|\mathsf{V}_{ud}|^2} \times \frac{f_{\kappa}^2}{f_{\pi}^2} \times \frac{M_{\kappa}(1-m_{\mu}^2/M_{\kappa}^2)^2}{m_{\pi}(1-m_{\mu}^2/m_{\pi}^2)^2} \times 1+\alpha(C_{\kappa}^{-}C_{\pi})$$

Inputs from theory:

 f_{κ}/f_{π}

Ratio of pseudoscalar decay constants

Rates with well-determined treatment of radiative decays:

- " Branching ratios
- " lifetimes

Inputs from experiment:

 $C_{\kappa'}, C_{\pi}$

Radiative inclusive electroweak corrections

 $1 + \alpha (C_{\kappa} - C_{\pi}) = 0.9930(35)$

Reduced uncertainty from SD virtual corrections

the KLOE's role

We have measured all (but τ_s) relevant inputs for 6 channels

PLB 632 (2006)	$BR^{(0)}(K_{L} \rightarrow \pi ev) = 0.4049(21)$ $BR^{(0)}(K_{L} \rightarrow \pi \mu v) = 0.2726(16)$			K _L
PLB 626 (2005)	τ _{<i>L</i>} = 50.92(30) ns			
		$\lambda'_{_+} imes 10^3$	$\lambda''_{_+} imes 10^3$	F (4)
PLB 636 (2006)		25.5 ± 1.8	1.4 ± 0.8	/ ₊ (<i>l</i>)
PLB 636 (2006)	$BR(K_s \rightarrow \pi ev) = 7.046(91) \times 10^{-4}$			K _s
PLB 636 (2006)	BR(<i>K</i>⁺	$\rightarrow \mu^+ \nu(\gamma)) = 0$	D.6366(17)	K±

Absolute BR for K^{\pm}_{l3}

- 4 independent tag samples: $K^{\pm} \rightarrow \mu \nu$, $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$
- Number of signal events from a fit of distribution of lepton mass squared (M²) known from TOF
- Perform measurement of absolute BR on each tag sample separately, check consistency

JHEP0802:098

 $BR(K_{e3}^{\pm}) = 4.965(52)\%$ $BR(K_{\mu3}^{\pm}) = 3.233(39)\%$

at τ_{\pm} =12.385 ns, with *d*BR/BR = -0.5*d* τ_{\pm}/τ_{\pm}

Absolute BR for $K^+ \rightarrow \pi^+ \pi^0$

- " Needed to perform a global fit to K⁺ BRs
- " $K^{}_{\rm l3}/K^{}_{\pi 2}$ measured by NA48 and ISTRA
- " Available measurement dates back to '72

(no radiative corrections)

" Normalization given by $K^{\!-}\!\rightarrow\!\mu^{\!-}\!\nu$ tag

" Number of $K^+ \rightarrow \pi^+ \pi^0$ events from a fit of the distribution of the momentum of the secondary particle in K rest frame, p^*

submitted to PLB

BR = (20.65 ± 0.05_{stat} ± 0.08_{syst})% -1.3% respect to PDG'06 **σ_{rel}~0.5%** ArXiv: 0707.4631

Absolute BR for $K^+ \rightarrow \pi^+ \pi^0$

K[±]lifetime

τ_{\pm} = 12.337(30)(20) ns

τ₊= 12.347(30) ns

$K_{L\mu3}$ form factor slopes

Standard method: fit t-spectrum, t = $(p_{\kappa}-p_{\pi})^2$

 π/μ separation at low energies is difficult

at the end of the spectrum, +1% in signal counts \rightarrow +15% in λ_0

Fit E__ spectrum, sensitivity loss: $\times \text{2-3 on } \sigma_{\text{stat}}(\lambda_{_0})$

JHEP0712:105

 $\dots \times 1.3$ with a combined fit with K_{Le3}

$\lambda'_{+} imes 10^{3}$	$\lambda''_{+} imes 10^{3}$	$\lambda_0 imes 10^3$
25.6 ± 1.8	1.5 ± 0.8	15.4 ± 2.1

$K_{\mu3}$ form-factor slopes

- approximation: hints for $\lambda^{\prime\prime}_{0}$?
- Fractional partial width difference by varying slopes values :

 $\Delta (1/\Gamma d\Gamma/dt) [\lambda''_0=0.4, 0]$

λx10³

$K_{\mu3}$ form-factor slopes

$$\Delta$$
 (1/Γ dΓ/dt) [λ''_0 =0.4, 0]
 Δ (1/Γ dΓ/dt) [λ'_0 =14.7, 16]

 $\lambda x 10^{3}$

 $\lambda x 10^{3}$ =25 $\lambda''_{+}=1.2$ =16 = () $1/\Gamma d\Gamma/dt$ 0 0.01 $\Delta(1/\Gamma d\Gamma/dt)$ 0.005 0 0.005 -0.01 0.015 3 4 5 t/m_{π^2}

K_{u3} form-factor slopes

Beyond quadratic parametrization

[Stern et al]

Dispersion relation for ln $f_0(t)$ subtracted at t = 0 and $t = m_{\kappa}^2 - m_{\pi}^2$, giving:

$$\tilde{f}_0(t) = \exp\left[\frac{t}{m_K^2 - m_\pi^2} \left(\ln C - G(t)\right)\right]$$
 G(t) evaluated using $K\pi$ scattering data

1 fit parameter: log C

 $\log C = 0.204 \pm 0.023$

$K_{L\mu3}$ form factor slopes

Results obtained with dispersive relations for f_{+,0}(t) averaged with published results

$$\begin{split} \lambda_{+} &= (26.0 \pm 0.5_{\text{STAT+SYST}}) \times \ 10^{\text{-3}} \\ \lambda_{0} &= (15.1 \pm 1.4_{\text{STAT+SYST}}) \times \ 10^{\text{-3}} \end{split}$$

$$\log C = 0.217 \pm 0.016$$

$K_{\mu3}$ form factor slopes

 $V_{\rm us}/V_{\rm ud}$ from $K_{\rm u2}$

Marciano '04

$$\frac{\Gamma(K^{\pm} \to \mu^{\pm} \nu(\gamma))}{\Gamma(\pi^{\pm} \to \mu^{\pm} \nu(\gamma))} = \frac{|V_{us}|^2 f_K^2 m_K (1 - m_{\mu}^2 / m_K^2)^2}{|V_{ud}|^2 f_{\pi}^2 m_\pi (1 - m_{\mu}^2 / m_{\pi}^2)^2} \times 0.9930(35)$$

Uncertainty from SD virtual corrections

HP/UKQCD '07 preliminary arXiv:0706.1726

$f_{\kappa}/f_{\pi} = 1.189(7)$

 $N_f = (2+1)_{stag}$ Cancellation of lattice-scale uncertainties

PLB 636 (2006)

BR($K^+ \rightarrow \mu^+ \nu(\gamma)$) = 0.6366(17)

Uses $K^- \rightarrow \mu^- \nu$ to tag 2-body *K* decays Counts $K^+ \rightarrow \mu^+ \nu$ from decay-momentum spectrum

 $V_{\rm ud}$, $V_{\rm us}$ and $V_{\rm us}/V_{\rm ud}$

JHEP 0804:059

sensitivity to NP: Z'oology

$$\begin{aligned} \mathbf{G}_{\mathsf{F}} = \mathbf{G}_{\mathsf{CKM}} [1-0.007 \mathbf{Q}_{\mathsf{eL}} (\mathbf{Q}_{\mu\mathsf{L}} - \mathbf{Q}_{\mathsf{dL}}) \frac{2 \ln(m_{Z'}/m_{W})}{(m_{Z'}^{2}/m_{W}^{2} - 1)}] \\ & \mathbf{SO}(10) \ Z\chi \ \mathsf{Boson:} \ \mathbf{Q}_{\mathsf{eL}} = \mathbf{Q}_{\mu\mathsf{L}} = -3 \mathbf{Q}_{\mathsf{dL}} = 1 \quad \text{[Marciano]} \\ & \mathbf{m}_{Z\chi} > 750 \ \mathsf{GeV} \ 95\% \mathsf{CL} \end{aligned}$$

2)

[K.Y. Lee]

Tree level breaking of unitarity in models with non-universal gauge interaction

sensitivity to NP: charged Higgs

Pseudoscalar currents, e.g. due to H[±], affect the K width:

$$\frac{\Gamma(M \to \ell\nu)}{\Gamma_{SM}(M \to \ell\nu)} = \left[1 - \tan^2\beta \left(\frac{m_{s,d}}{m_u + m_{s,d}}\right) \frac{m_M^2}{m_H^2}\right]^2 \quad \text{for}$$

IHED

Hou, Isidori-Paradisi

The observable

$$R_{\ell 23} = \left| \frac{V_{us}(K_{\mu 2})}{V_{us}(K_{\ell 3})} \times \frac{V_{ud}(0^+ \to 0^+)}{V_{ud}(\pi_{\mu 2})} \right|$$

we get:

• R₁₂₃ = 1.008(8)

(unitarity for K_{I3} an β -decays is used)

$$\begin{split} \mathbf{R}_{\mathbf{I23}} & \text{sensitivity to } \mathbf{H}^{\underline{*}} \text{ exchange} \\ R_{\ell 23} &= \left| 1 - \frac{m_{K^+}^2}{m_{H^+}^2} \left(1 - \frac{m_{\pi^+}^2}{m_{K^+}^2} \right) \, \frac{\tan^2 \beta}{1 + \epsilon_0 \, \tan \beta} \right| \end{split}$$

K_{I3} wa data and lepton universality

For each state of kaon charge, we evaluate:

$$r_{\mu e} = \frac{(R_{\mu e})_{\text{obs}}}{(R_{\mu e})_{\text{SM}}} = \frac{\Gamma_{\mu 3}}{\Gamma_{e 3}} \cdot \frac{I_{e 3} \left(1 + \delta_{e 3}\right)}{I_{\mu 3} \left(1 + \delta_{\mu 3}\right)} = \frac{\left[|V_{us}| f_{+}(0)\right]_{\mu 3, \text{ obs}}^{2}}{\left[|V_{us}| f_{+}(0)\right]_{e 3, \text{ obs}}^{2}} = \frac{g_{\mu}^{2}}{g_{e}^{2}}$$

$r_{\mu e} = 1.004(4)$ from KI3

 $\tau \rightarrow h \nu \nu$ decays:

$$(r_{\mu e})_{\tau} = 1.001(4)$$
 [PDG07]

 $\pi \rightarrow h \nu$ decays:

 $(r_{\mu e})_{\pi/2} = 1.003(3)$ see Erler, Ramsey-Musolf '06

0.1% on gauge couplings

$$r_{\mu e} = 1.003(2)$$
 K, τ , π average

The special role of $\Gamma(K_{2})/\Gamma(K_{1})$ SM: very well known no hadronic uncertainties (no f_{μ}) [Masiero, Paradisi, In MSSM, LFV can give up to % deviations: Petronzio] NP dominated by contribution of ev_{τ} final state: $\mathsf{R}_{\mathsf{K}} \approx \frac{\Gamma(\mathsf{K} \rightarrow \mathsf{ev}_{\mathsf{e}})}{\Gamma(\mathsf{K} \rightarrow \mu \mathsf{v}_{\mathsf{H}}) + \Gamma(\mathsf{K} \rightarrow \mathsf{ev}_{\tau})}$ ν_eν_μν_τ H $R_{\kappa} \approx R_{\kappa}^{SM} [1 + \frac{m_{\kappa}^{2}}{m_{\star}^{4}} + \frac{m_{\tau}^{2}}{m_{\star}^{2}} |\Delta^{R}_{31}|^{2} \tan^{6}\beta]$ $eH^{\pm}\nu_{ au}
ightarrow rac{g_2}{\sqrt{2}} rac{m_{ au}}{M_W} \Delta_R^{31} \tan^2 \beta$ 1% effect ($\Delta^{R}_{31} \sim 5 \times 10^{-4}$, tan $\beta - 4$) m_H ~ 500 GeV) not unnatural Present accuracy on R_{κ} @ 6% Need for precise measurements

KLOE arXiv:0707.4623 Preliminary result with 1.7 fb⁻¹ (~ 8000 events)

 $BR(K^{\pm}e^{2})/BR(K^{\pm}\mu^{2}) = 2.55(5)(5) \times 10^{-5}$

X 2 more data(1.7/2.5fb⁻¹) + 30%more from an independent sample $\sigma R_{\kappa} \sim 1\%$

NA48/2 (2005) Preliminary Preliminary result with 2003 data (~ 4500 events)

BR(*K*[±]e2)/BR(*K*[±]µ2) = 2.416(43)(24) x 10⁻⁵

NA48/2 (2007) Preliminary Preliminary result with 2004 data (~ 3500 events) BR($K^{\pm}e^{2}$)/BR($K^{\pm}\mu^{2}$) = 2.455(45)(41) x 10⁻⁵

X 10 more data from new run (end in October) $\sigma R_{\kappa} \sim 0.3\%$

Counting K_{e2} events

Perform direct search for K_{e_2} without tag: gain \times 4 of statistics

8090±160 observed events on 1.7 fb⁻¹

K_{e2} result at KAON07

We presented a preliminary result with 2.7% uncertainty: R_к= 2.55(7)×10⁻⁵ ArXiv: 0707.4623

Clark, 1972 100 tanβ FlaviA Heard, 1975 Heintze, 1976 80-NA48/2 (2005) NA48/2 (2007) 60-KLOE 2.4 2.5 2.6 2.8 2.9 2.1 2.2 2.3 2.7 I(K_)/I(K_) [10-5] $\Delta_{13} = 0.001$ 40- $\Delta_{13} = 0.0005$

95%-CL excluded regions in the 20 $tan\beta$ - M_µ plane, for $R_{\rm v} = (2.55 \pm 0.07) \ 10^{-5}$ $\Delta_{13} = 10^{-3}, 0.5 \times 10^{-3}, 10^{-4}$ 200 400

M_u (GeV)

1000

 $\Delta_{13} = 0.0001$

800

600

K_{e^2} perspectives

Improved PID + better understanding of P_{lepton} measurement tails ~ 13K events selected with full statistics (2.2 fb⁻¹)

Expect fractional accuracy stat.⊕syst. <1.5%

 $N(e^{+}) = 6901\pm98$ $N(e^{-}) = 6514\pm97$ frac. error 1.1%

CONCLUSIONS

- 8 publications + 2 final since last meeting
- Most important results best measurements of V_{us} best measurement of a_μ^{ππ}(0.35-0.95 GeV²)
- Many preliminary results + ongoing analyses $K_{e2}/K_{\mu2}$, K_{I3} slopes, $\sigma_{had}(\pi\gamma/\mu\gamma)$, low q²), $f_0 \rightarrow KK\gamma \quad \eta \rightarrow \pi \ ee \dots$