

Review of New Strange Quark Results XXVII Physics In Collision Conference

Kloe NA48 KTeV ISRA+

64 years after first observation In 1944 of a charged kaon in a cloud chamber by Le Prince-Ringuet, strange quark physics is still vital and going strong

B. Cox University of Virginia June 27, 2008

- I. CP/CPT Violation
- II. Lepton Flavor Violation/NP
- III. e, μ universality in K_{13} , K_{12}
- V_{us}
- V. ChPT
- VI. Quantum Coherence
- **VII.** Cusp Measurements

Not covered for lack of time

New Physics anywhere?

Four Active Kaon Collaborations

Charged and Neutral Kaon Decays*

NA48/2

KLOE Future NA62 Future KLOE II

* Apologies to the Hyperon advocates

KTeV Project x??

KEK E391a

First Dedicated $K_L \rightarrow \pi^0 \nu \nu$ Experiment

Future E14 at J-PARC

I. New Results on CP/CPT Violation (and associated parameters)

KTeV: Epsilon Prime

E391a: K_L→π⁰νν

Final KTeV Measurement of ϵ'/ϵ (1996, 1997 and 1999 Data Sets)

To distinguish between direct and indirect CP violation, compare $K_{L,S} \rightarrow \pi^+\pi^-, \pi^0\pi^0$:

$$\operatorname{Re}(\varepsilon'/\varepsilon) \approx \frac{1}{6} \left[\frac{\Gamma(K_L \to \pi^+ \pi^-) \Gamma(K_S \to \pi^+ \pi^-)}{\Gamma(K_L \to \pi^0 \pi^0) \Gamma(K_S \to \pi^0 \pi^0)} - 1 \right]$$

 $\epsilon'/\epsilon \neq 0$ direct CP violation

$$K^0 \rightarrow \pi^+\pi^- \neq \overline{K}^0 \rightarrow \pi^+\pi^-$$

Backgrounds and event yields

Main classes of background:

- Misidentified kaon decays
- For $K \rightarrow \pi^+\pi^-$: $K_L \rightarrow \pi e \nu$, $K_L \rightarrow \pi \mu \nu$
- For $K \rightarrow \pi^0 \pi^0$: $K_L \rightarrow \pi^0 \pi^0 \pi^0$
- Scattered K→ππ events
- From regenerator and final collimator
- Backgrounds are simulated with MC, normalized to data sidebands, and subtracted
- Background level is ~0.1% for charged mode and ~1% for neutral mode.

After background subtraction:	$\mathbf{K}_{\mathbf{L}}$	"K _S "

	vacuum Beam	Reg. Beam
$K \rightarrow \pi^+\pi^-$	25,107,242	43,674,208
$K \rightarrow \pi^0 \pi^0$	5,968,198	10,180,175

Systematic Uncertainties in Re(ϵ'/ϵ)

			1)	
Source	Error on Re	Error on $Re(\epsilon'/\epsilon)$ (×10 ⁻⁴)		
	$K \to \pi^+\pi^-$	$K \rightarrow \pi^0 \pi^0$		Reduced
Trigger	0.23	0.20		from 1.47
Csl cluster reconstruction		0.75	>	110111 1.17
Track reconstruction	0.22			
Selection efficiency	0.23	0.34		
Apertures	0.30	0.48		
Acceptance	0.57	0.48		
Backgrounds	0.20	1.07		
MC statistics	0.20	0.25	_	
Total	0.81	1.55	_	
Fitting	C	0.31	<u> </u>	
Total	1	78	=	

New KTeV Result:

Re(
$$\varepsilon'/\varepsilon$$
) = [19.2 ± 1.1(stat) ± 1.8(syst)] × 10⁻⁴
= (19.2 ± 2.1) × 10⁻⁴

World average: $Re(\epsilon'/\epsilon) = (16.8 \pm 1.4) \times 10^{-4}$ (confidence level = 13%)

(KTeV 2003: $Re(\epsilon'/\epsilon) = [20.7 \pm 1.5(stat) \pm 2.4 (syst)] \times 10^{-4}$)

Other Neutral Kaon Decay Parameters

K_L - K_S Interference Downstream of Regenerator

$$R_{\pi\pi} \propto |\eta|^2 e^{-\Gamma_L t} + |\rho|^2 e^{-\Gamma_S t} + 2|\eta| |\rho| e^{-(\Gamma_S + \Gamma_L)t/2} \cos(\Delta m t + \Phi_\rho - \Phi_\eta)$$

Fitting Strategy for z Decay Distribution

- In contrast with Re(ε'/ε) fit, in which a single ~ 50 m z bin is considered, the regenerator beam data is fitter in 2 m z bins.
- Float $\Delta m = m_L m_S$, τ_S , ϕ_{ϵ} , $Re(\epsilon'/\epsilon)$, $Im(\epsilon'/\epsilon)$ with no CPT assumption.
- CPT constraint $(\phi_{\epsilon} = \phi_{SW} \text{ and } Im(\epsilon'/\epsilon) = 0)$ then applied *a posteriori* to find best values τ_s , Δm .

$$\eta_{+-} = \frac{A(K_L \to \pi^+ \pi^-)}{A(K_S \to \pi^+ \pi^-)} = \varepsilon + \varepsilon'$$

$$\eta_{00} = \frac{A(K_L \to \pi^0 \pi^0)}{A(K_S \to \pi^0 \pi^0)} = \varepsilon - 2\varepsilon'$$

$$\phi_{SW} = \tan^{-1} \left(\frac{2\Delta m}{\Delta \Gamma} \right)$$

$$\phi_{+-} \approx \phi_{\varepsilon} + \operatorname{Im}(\varepsilon'/\varepsilon)$$

$$\phi_{00} \approx \phi_{\varepsilon} - 2 \operatorname{Im}(\varepsilon'/\varepsilon)$$

$$\Delta \phi \equiv \phi_{00} - \phi_{+-} \approx -3 \operatorname{Im}(\varepsilon'/\varepsilon)$$

Z Distribution Fit Results

$$\phi_{\varepsilon} = (43.86 \pm 0.63)^{\circ}$$

$$\phi_{\varepsilon} - \phi_{SW} = (0.40 \pm 0.56)^{\circ}$$

$$\Delta \phi = (0.30 \pm 0.35)^{\circ}$$

All results consistent with CPT symmetry

Z Distribution Fit Results (cont)

No CPT constraint:

$$\Delta m = (5279.7 \pm 19.5) \times 10^6 \text{ hs}^{-1}$$

 $\tau_S = (89.589 \pm 0.070) \times 10^{-12} \text{ s}$

CPT constraint applied:

$$\Delta m = (5269.9 \pm 12.3) \times 10^6 \text{ hs}^{-1}$$

 $\tau_S = (89.623 \pm 0.047) \times 10^{-12} \text{ s}$

Δm and τ_S

KTeV 2003: $\Delta m = (5261 \pm 13) \times 10^6 \text{ hs}^{-1}$

KTeV 2003: $\tau_S = (89.65 \pm 0.07) \times 10^{-12} \text{ s}$

6/27/08

Summary of KTeV Results from Total Data (Preliminary)

$$\frac{Rate(K^{0} \to \pi^{+}\pi^{-}) - Rate(\overline{K}^{0} \to \pi^{+}\pi^{-})}{Rate(K^{0} \to \pi^{+}\pi^{-}) + Rate(\overline{K}^{0} \to \pi^{+}\pi^{-})} = (5.5 \pm 0.5) \times 10^{-5}$$

• Re(
$$\epsilon'/\epsilon$$
) = (19.2 ± 2.1) × 10⁻⁴
• Δ m = (5269.9 ± 12.3) × 10⁶ ħs⁻¹
• τ_S = (89.623 ± 0.047) × 10⁻¹² s
• ϕ_ϵ = (43.86 ± 0.63)°
• $\phi_\epsilon - \phi_{SW}$ = (0.40 ± 0.56)°
• $\Delta \phi$ = (0.30 ± 0.35)°

Phases ϕ_{+-} , ϕ_{00} dominate uncertainty in unitarity fit in PDG Future lattice calculations may allow precise tests of the S\MI. All measurements consistent with CPT symmetry

Importance of $K_L \rightarrow \pi^0 \nu \nu$

E391a

One of a number of Golden Decays Measures η (height of CKM Triangle) directly

	$\Gamma_{ m SD}/\Gamma$	Irreducible theory err. (amp)	SM BR
$K_L \rightarrow \pi^0 \nu \nu$	>99%	1%	3 × 10 ⁻¹¹
$K^+ \rightarrow \pi^+ \nu \nu$	88%	3%	8×10^{-11}
$K_L \rightarrow \pi^0 e^+ e^-$	38%	15%	3.5×10^{-11}
$K_L \rightarrow \pi^0 \mu^+ \mu^-$	28%	30%	1.5×10^{-11}

FCNC processes dominated by *Z*-penguin and box diagrams

Give direct information on CKM matrix elements:

- No LD contributions from processes with intermediate γs
- Hadronic matrix elements can be obtained from BRs for leading K decays
- K_L → π⁰νν is nearly pure direct CP violating

Theoretical Framework for $K_L \rightarrow \pi^0 \nu \nu$

E391a

$$\begin{array}{rcl} \lambda & = & V_{us} \\ \lambda_c & = & V_{cs}^* V_{cd} \\ \lambda_t & = & V_{ts}^* V_{td} \end{array}$$

$$x_q \equiv m_q^2/m_W^2$$

Loop functions favor top contribution

QCD corrections for charm diagrams contribute to uncertainty -

Hadronic matrix element via isospin rotation

obtained from BR(
$$K_{e3}$$
)
$$\kappa_+ = r_{K^+} \frac{3\alpha^2 \, \mathrm{BR}(K^+ \to \pi^0 e^+ \nu)}{2\pi^2 \sin^4 \theta_W} \, \lambda^8$$

$K_L \rightarrow \pi^0 vv$ searches

Essential signature: " 2γ + nothing"

All other decays have 2 extra γ or 2 tracks except $K_L \rightarrow \gamma \gamma$ (not a big problem since p_{\perp} = 0, ϕ_{12} = 180°)

Main backgrounds:

$$K_L \rightarrow \pi^0 \pi^0$$
 with 2 lost γ

Hermetic veto, including beam exit

$$n + gas \rightarrow X\pi^0, X\eta$$

High vacuum decay region

$M(\gamma\gamma) = m_{\pi 0}$ is the only sharp kinematic constraint

Generally used to reconstruct vertex position Additional topological constraints advantageous:

- Measurement of photon directions
- Microbunched beam for TOF constraints

$$R_1 \approx R_2 \equiv R = \frac{d\sqrt{E_1 E_2}}{m_{\pi^0}}$$

Veto system performance & experiment design are paramount

KEK 391a New Result for BR($K_L \rightarrow \pi^0 \nu \nu$)

E391a

Neutral secondary beam from KEK PS Pb and Be filters to screen γ , n Peak K_L momentum 2 GeV at detector Collimated to "pencil beam" Geometric constraint for π^0 vertexing Halo suppressed to 10^{-4} at r = 4 cm

Front barrel CC 02 Front barrel CC 04 CC 05 Rack Antl Movable frame Support

Forward photon veto

Pure CsI crystals $7 \times 7 \times 30 \text{ cm}^3$

Vacuum decay volume 10⁻⁷ mbar

Summary of All Results for upper limits for BR($K_L \rightarrow \pi^0 \nu \nu$)

 $E391* < 6.7x10^{-8}$

 $KTeV^{**} < 5.9x10^{-7}$

 $KTeV < 1.6x10^{-6}$

SM Prediction

Mescia, Smith '07 Update at http://www.lnf.infn.it/wg/vus

$$BR(K_L \to \pi^0 \nu \nu) = 2.76 \pm 0.40 \times 10^{-11}$$

* Will be upgraded by addition of CsI from KTeV and moved to J-Parc as E-14

** Required a Dalitz pair from one of the π^0 photons

II. Lepton Flavor Violation/NP

KTeV:
$$K_L \rightarrow \pi^0 \mu e$$
 $K_L \rightarrow \pi^0 \pi^0 \mu e$
 $\pi^0 \rightarrow \mu e$

Lepton Flavor Violation in K Decays In KTeV

Searches motivation: tests for tree-level LFV amplitudes possible in Technicolor, SUSY, ...

E.g., horizontal bosons in extended TC:
$$M_H \approx 85 \text{ TeV} \left[\frac{10^{-11}}{B(K^+ \to \pi^+ \mu^+ e)}\right]^{1/4}$$

- Look for two charged tracks in detector:
 - One muon
 - Track must match hits in the muon hodoscopes
 - One electron
 - Track momentum = cluster energy in Csl
 - TRD info is consistent with an electron
- Allows searches for:

$$\mathbf{K}_{\mathbf{I}}$$
 \rightarrow $\pi^{0}\mu \mathbf{e}$

$$\mathbf{K}_{\mathbf{I}}$$
 \rightarrow $\pi^0\pi^0\mu \mathbf{e}$

$$-\pi^0 \rightarrow \mu e$$

LFV: $K_L \rightarrow \pi^0 \mu e$

- Highest background out of our trio of LFV decays
 - Ke3/Ke4 + π decay or π punch through to muon hodoscopes = fake signal
 - Make tight cut on accidental activity in detector
 - Apply cut on calculated |p, | assuming Ke4 decay
 - Real Ke4 events produce positive values
 - Other events produce negative (non-physical) values
- Sum of MC background estimates:
 - 4.21 +/- 0.53 in control region
 - -contains 99% of signal
 - 0.66 +/- 0.23 in signal region
 - -contains 95% of signal

LFV: $K_L \rightarrow \pi^0 \mu e$

- 1997 plus 1999 Data after all cuts:
 - 5 events in control region
- $_{x 10}^{-2}$ 0 events in signal region

Resulting limit: Br($K_L \rightarrow \pi^0 \mu e$) < 7.56 x 10⁻¹¹ (90% C.L.)

Factor of 83 lower than previous limit

LFV: $K_L \rightarrow \pi^0 \pi^0 \mu e$

- Extend $K_L \rightarrow \pi^0 \mu e$ search
- Attempt to reconstruct $2^{nd} \pi^0$
 - Slashes backgrounds
 - Offset by relaxing cuts to improve sensitivity
 - Remove tight cuts on accidental activity
 - Remove cuts on TRD information for electron track
- Largest background from $K_L \rightarrow \pi^0 \pi^0 \pi^0_D$
 - Need a bad electron cluster in CsI combined with an accidental muon in the muon hodoscope
 - Apply VERY loose TRD cut on muon track

LFV: $K_L \rightarrow \pi^0 \pi^0 \mu e$

- Expect 0.44 +/- 0.23 events in signal region
- Observe no events in signal region
- Resulting limit: Br($K_1 \rightarrow \pi^0 \pi^0 \mu e$) < 1.7 X 10⁻¹⁰ (90% CL)
 - First reported limit on this decay mode

LFV:
$$\pi^0 \rightarrow \mu e$$

- . Analysis can be extended by placing an extra constraint:
 - \mathbf{M}_{ue} reconstructs near $\mathbf{M}_{\mathrm{\pi0}}$
- Resulting limit: $Br(\pi^0 \to \mu e) < 3.59 \text{ X } 10^{-10} (90\% \text{ CL})$
- . Limit 10x(2x) lower than previous best limit on $\pi^0 \rightarrow \mu^-e^+(\mu^+e^-)$
- Equally sensitive to both charge modes

Lepton Flavor Violation Summary

III. NP and Lepton Flavor Universality

KLOE NA48 KTeV ISRA+

NP and Lepton Universality in K Decays KTeV

KLOE NA48 KTeV ISRA+

In SM, electron and muon differs only by mass and coupling to Higgs

Can measure ratio of coupling constants, seeking deviations from prediction in processes well determined in SM, like:

$$R_{e\mu} = \Gamma(K_{e3})/\Gamma(K_{\mu3}) \rightarrow G_F^e/G_F^\mu$$

Test of lepton universality for weak vector currents

$$\mathbf{R}_{\mathbf{K}\pi} = \Gamma(\mathbf{K} \to \mu \nu) / \Gamma(\pi \to \mu \nu),$$

Test for H⁺ exchange (scalar) or presence of right-handed currents

$$R_K = \Gamma(K \rightarrow ev)/\Gamma(K \rightarrow \mu v)$$

Test for LFV due to effective pseudoscalar weak currents

NP from K₁₃ Branching Ratios

KLOE NA48 KTeV ISRA+

World data for K_{I3} BR are in good shape due to Kloe, NA48, KTeV and ISTRA+

From:
$$\Gamma(K_{\ell 3(\gamma)}) = \frac{G_F^2 m_K^5}{192\pi^3} C_K S_{\mathrm{ew}} [V_{us}|^2 f_+(0)^2 I_K^{\ell}(\lambda_{+,0}) \left(1 + \delta_{SU(2)}^K + \delta_{\mathrm{em}}^{K\ell}\right)^2$$

		$f_{+}(0) \times V_{us} $	Error,%	Contributions to % error			
				BR	τ	Δ	$\mathbf{I}^{l}_{\mathbf{K}}$
	K _{Le3}	0.2163(6)	0.28	0.09	0.19	0.15	0.09
net Kaon WG	K _{Lμ3}	0.2168(7)	0.31	0.10	0.18	0.15	0.15
	K _{Se3}	0.2154(13)	0.67	0.65	0.03	0.15	0.09
_	K ⁺ _{e3}	0.2173(8)	0.39	0.26	0.09	0.26	0.09
5 (0) 11	K ⁺ _{μ3}	0.2176(11)	0.51	0.40	0.09	0.26	0.15
f ₊ (0)×V _{us}							
0.215	0.2175	0.2166(5)	$\bigcirc 0.22$	$P(\chi^2/ndf) = 58\%$			

NP Results in $R_{e\mu}$ from K_{l3}

$$\frac{\Gamma_{\mu 3}}{\Gamma_{e 3}} \cdot \frac{I_{e 3} (1 + \delta_{e 3})}{I_{\mu 3} (1 + \delta_{\mu 3})} = \frac{[|V_{u s}| f_{+}(0)]_{\mu 3, \text{ obs}}^{2}}{[|V_{u s}| f_{+}(0)]_{e 3, \text{ obs}}^{2}} = \frac{g_{\mu}^{2}}{g_{e}^{2}}$$

Result: e/\mu universality satisfied:

$$\begin{array}{lll} K_L & g_{\mu}^{\ 2}/g_e^{\ 2} = 1.0049(61) & cfr \ with & g_{\mu}^{\ 2}/g_e^{\ 2} = 1.054(15) \ [PDG04] \\ K^+ & g_{\mu}^{\ 2}/g_e^{\ 2} = 1.0029(86) & cfr \ with & g_{\mu}^{\ 2}/g_e^{\ 2} = 1.019(13) \ [PDG04] \\ Avg & g_{\mu}^{\ 2}/g_e^{\ 2} = 1.0043(52) & \end{array}$$

Compare with test sharing the same theoretical scenario, $\tau \rightarrow l \lor \lor \iota$ decays:

$$\tau \rightarrow l \nu \nu$$
 $g_{\mu}^{2}/g_{e}^{2} = 0.9998(40) \text{ [PDG07]}$

Precision from K's comparable with that from τ 's

NP effects in K_{12} vs π_{12} Decays

In two Higgs doublet models (MSSM, too), exchange of H⁺ provides an additional scalar current, which might contribute sizeably wrt to SM:

$$\frac{\Gamma(\textbf{\textit{K}}\rightarrow\ell\nu)}{\Gamma_{\!SM}(\textbf{\textit{K}}\rightarrow\ell\nu)} \cong \left|1 - \frac{m_{K^+}^2}{M_{H^+}^2} \left(1 - \frac{m_d}{m_s}\right) \frac{\tan^2\beta}{1 + \epsilon_0\tan\beta} \right| \text{[Hou PRD48 (1992) 2342, Isidori-Paradisi]}$$

NP effect is suppressed for π_{l2} wrt K_{l2} , so NP might appear in $Kl2 / \pi l2$, predicted in the SM to be:

$$\frac{\Gamma(K_{\ell 2(\gamma)}^{\pm})}{\Gamma(\pi_{\ell 2(\gamma)}^{\pm})} = \left| \frac{V_{us}}{V_{ud}} \right|^2 \frac{f_K^2 m_K}{f_{\pi}^2 m_{\pi}} \left(\frac{1 - m_{\ell}^2 / m_K^2}{1 - m_{\ell}^2 / m_{\pi}^2} \right)^2 \times (1 + \delta_{\rm em})$$

NP test from comparing V_{us}/V_{ud} from $M \rightarrow lv$ with $V_{us}(K_{l3})/V_{ud}(0^+ \rightarrow 0^+)$:

$$\left| \frac{V_{us}(K_{\ell 2})}{V_{us}(K_{\ell 3})} \times \frac{V_{ud}(0^+ \to 0^+)}{V_{ud}(\pi_{\ell 2})} \right| \stackrel{?}{=} \left| 1 - \frac{m_{K^+}^2}{M_{H^+}^2} \left(1 - \frac{m_d}{m_s} \right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta} \right|$$

NP Results for R $_{K\pi} = \Gamma(K \rightarrow \mu \nu)/\Gamma(\pi \rightarrow \mu \nu)$

Result is:
$$\left| \frac{V_{us}(K_{\ell 2})}{V_{us}(K_{\ell 3})} \times \frac{V_{ud}(0^+ \to 0^+)}{V_{ud}(\pi_{\ell 2})} \right| = \textbf{1.0018(57)}$$

NP sensitivity from $K \rightarrow \mu\nu$ comparable to that from BR(B $\rightarrow \tau v$) = 1.42(44)×10⁻⁴ [Babar-Belle average]

Error dominated by theoretical uncertainties in form factors

NP induced by weak right-handed currents can be also tested (there, complement lattice information with Callan-Treiman scalar ff constraint) [FlaviaNet arXiv:0801.1817]

NP in $R_K = \Gamma(Ke2)/\Gamma(K\mu2)$

KLOE NA48 NA62

SM prediction w 0.04% precision, benefits of cancellation of hadronic uncertainties (no f_K): $R_K = 2.477(1) \times 10^{-5}$ [Cirigliano Rosell arXiv:0707:4464]

Helicity suppression can boost NP [Masiero-Paradisi-Petronzio PRD74 (2006) 011701]

In R-parity MSSM, LFV can give 1% deviations from SM:

$$R_K^{LFV} \simeq R_K^{SM} \left[1 + \left(\frac{m_K^4}{M_H^4} \right) \left(\frac{m_{ au}^2}{m_e^2} \right) |\Delta_R^{31}|^2 \tan^6 \beta \right]$$

NP dominated by contribution of ev, final state, with effective coupling

$$l {
m H}^{\pm}
u_{ au} \,
ightarrow \, rac{{f g_2}}{\sqrt{2}} rac{{f m}_{ au}}{{
m M_W}} \, {f \Delta}_{13} \,$$
 , from loop

Present exp. accuracy on R_K @ 6%

New measurement of R_K can be very interesting, if error is pushed @1% or better

R-parity violating MSSM

NP Results for $R_K = \Gamma(K \rightarrow ev)/\Gamma(K \rightarrow \mu v)$

Kloe NA48 NA62

KLOE

• preliminary result with 2001—5 data: $R_K = 2.55 (5)_{stat} (5)_{syst} 10^{-5}$, from ~ 8000 Ke2 candidates (3% accuracy), perspectives to reach 1% error after analysis completion

NA48/2

- preliminary result with 2003 data: $R_K = 2.416 (43)_{stat} (24)_{syst} 10^{-5}$, from ~ 4000 Ke2 candidates, statistical error dominating (2% accuracy)
- preliminary result with 2004 data: $R_K = 2.455 (45)_{stat} (41)_{syst} 10^{-5}$, from ~ 4000 Ke2 candidates from special minimum bias run (3% accuracy)

NA62 (ex NA48)

collected ~ 100,000 Ke2 events in dedicated 2007 run, aims at breaking the 1% precision wall, possibly reaching < ~0.5%

6/27/08

Summary of R_K measurements

KLOE NA48 NA62

Recent (preliminary) results improved greatly with respect to 2006 PDG World average, $R_{\kappa} = 2.457(32) \times 10^{-5}$, agrees with SM

R_K Exclusion Regions for Higgs

Kloe NA48 NA62

Sensitivity shown as 95%-CL excluded regions in the tan β - M_H plane, for fixed values of the 1-3 slepton-mass matrix element, $\Delta_{13} = 10^{-3}, 0.5 \times 10^{-3}, 10^{-4}$

Present world avg: $R_{K} = 2.457(32) \times 10^{-5}$

Perspective: same R_K , $\delta R_K = 0.3\%$

IV. CKM Unitarity

KLOE KTeV NA48

In 2004 it was realized that the PDG branching ratios that had been used for decades to calculate V_{us} and the first row unitarity of the CKM matrix were flawed. A large effort by the these three experiments was mounted to remeasure the various K branching ratios and form factors and by the Flavia group to bring together the information to redo V_{us} .

The saga continues

Quantities for CKM Unitarity Check

KLOE KTeV NA48 ISTRA+

$$|\mathbf{V}_{\mathrm{us}}| \times f_{+}(0)$$

$$\Gamma(K_{\ell 3(\gamma)}) = \frac{G_F^2 m_K^5}{192\pi^3} C_K S_{\text{ew}} |V_{us}|^2 f_+(0)^2 I_K^{\ell}(\lambda_{+,0}) \left(1 + \delta_{SU(2)}^K + \delta_{\text{em}}^{K\ell}\right)^2$$

$$|\mathbf{V}_{\mathrm{us}}|/|\mathbf{V}_{\mathrm{ud}}| \times f_{\mathrm{K}}/f_{\pi}$$

$$\frac{\Gamma(K_{\ell 2(\gamma)}^{\pm})}{\Gamma(\pi_{\ell 2(\gamma)}^{\pm})} = \left| \frac{V_{us}}{V_{ud}} \right|^2 \frac{f_K^2 m_K}{f_{\pi}^2 m_{\pi}} \left(\frac{1 - m_{\ell}^2 / m_K^2}{1 - m_{\ell}^2 / m_{\pi}^2} \right)^2 \times (1 + \delta_{\rm em})$$

Obtained from global fits and averages of dominant K_L, K_S, and K[±] BRs and lifetime and parameterization of the K→π interaction form factor

Determination of $|V_{us}| \times f_{+}(0)$

KLOE KTeV NA48 ISTRA+

$$\Gamma(K_{l3(\gamma)}) = \frac{C_{K}^{2} G_{F}^{2} M_{K}^{5}}{192\pi^{3}} S_{EW} |V_{us}|^{2} |f_{+}^{K^{0}\pi^{-}}(0)|^{2} I_{K\ell}(\lambda_{+,0}) (1 + \delta_{SU(2)}^{K} + \delta_{em}^{K\ell})^{2}$$

Callan-Treiman

B. Cox

with
$$K = K^+$$
, K^0 ; $\ell = e$, μ and $C_K^2 = 1/2$ for K^+ , 1 for K^0

Inputs from theory:

 S_{EW} Universal short distance

EW correction (1.0232)

 $\delta^{K}_{SU(2)}$ Form factor correction for

strong SU(2) breaking

SKl em Long distance EM effects

 $f_{+}^{K^0\pi^-}(0)$ Form factor at zero momentum transfer (t=0)

Inputs from experiment:

 $\Gamma(K_{l3(\gamma)})$ Branching ratios

properly inclusive of radiative effects;

lifetimes

 $I_{K\ell}(\lambda)$ Phase space integral: λ 's parameterize form factor dependence on t:

 K_{e3} : only λ_{+}

 $K_{\mu3}$: need λ_+ and λ_0

K_L leading branching ratios and τ_L

18 input measurements:	Parameter	Value	S
5 KTeV ratios	$BR(K_{e3})$	0.4056(7)	1.1
NA48 $K_{e3}/2$ tr and $\Gamma(3\pi^0)$	$BR(K_{\mu 3})$	0.2705(7)	1.1
4 KLOE BRs	$\mathrm{BR}(3\pi^0)$	0.1951(9)	1.2
KLOE , NA48 $\pi^+\pi^-/K_{l3}$	$BR(\pi^{+}\pi^{-}\pi^{0})$	0.1254(6)	1.1
KLOE , NA48 $\gamma\gamma/3\pi^0$	$BR(\pi^+\pi^-)$	$1.997(7) \times 10^{-3}$	1.1
PDG ETAFIT for $\pi^+\pi^-/\pi^0\pi^0$	$BR(2\pi^0)$	$8.64(4) \times 10^{-4}$	1.3
KLOE τ_L from $3\pi^0$	$\operatorname{BR}(\gamma\gamma)$	$5.47(4) \times 10^{-4}$	1.1
Vosburgh '72 $\tau_{\rm L}$	$ au_L$	51.17(20) ns	1.1

8 free parameters, 1 constraint: $\Sigma BR=1$

Main differences wrt PDG06:

- For KLOE and KTeV, use values obtained before applying constraints.
- Make use of preliminary BR($3\pi^0$) and new BR($\pi^+\pi^-$)/BR(Ke3) from NA48
- Fit parameter BR($\pi^+\pi^-$) is understood to be inclusive of the DE component.

K_S leading branching ratios and τ_S

4 input measurements:

KLOE BR(Ke3)/BR($\pi^+\pi^-$) KLOE BR($\pi^+\pi^-$)/BR($\pi^0\pi^0$) Universal lepton coupling NA48 BR(Ke3)

 $\tau_{\rm S}$: non CPT-constrained fit value, dominated by 2002 NA48 and 2003 KTeV measurements

4 free parameters: $K_S\pi\pi$, $K_S\pi^0\pi^0$, K_Se3 , $K_S\mu 3$, 1 constraint: $\Sigma BR=1$

- KLOE meas. completely determine the leading BR values.
- NA48 Ke3 input improve the BR(Ke3) accuracy of about 10%.
- $BR(K_Se3)/BR(K_Le3)$ from NA48 not included (need of a K_L and K_S combined fit)
- Combined fit would be useful in properly account for preliminary NA48 $\Gamma(K_L \rightarrow 3\pi^0)$ and PDG ETAFIT, used in the K_L fit.

$\mbox{K}^{\mbox{\tiny \pm}}$ leading branching ratios and $\tau^{\mbox{\tiny \pm}}$

KLOE NA48 ISTRA+

26 input measurements:

5 older τ values in PDG

2 KLOE τ

KLOE BR(μν)

KLOE Ke3, $K\mu3$, and $K\pi2$ BRs

ISTRA+ $K_{e3}/\pi \pi^0$

NA48/2 $K_{e3}/\pi \pi^0$, $K_{u3}/\pi \pi^0$

E865 K_{e3}/K dal

3 old $\pi\pi^0/\mu\nu$

2 old *Ke3*/**2 body**

3 Kµ3/Ke3 (2 old)

2 old + 1 KLOE results on 3π

7 free parameters, 1 constraint: ΣBR=1

6/27/08

Parameter	Value	S
$BR(K_{\mu 2})$	63.57(11)%	1.1
$\mathrm{BR}(\pi\pi^0)$	20.64(8)%	1.1
$BR(\pi\pi\pi)$	5.595(31)%	1.0
$BR(K_{e3})$	5.078(26)%	1.2
$BR(K_{\mu3})$	3.365(27)%	1.7
$\mathrm{BR}(\pi\pi^0\pi^0)$	1.750(26)%	1.1
$ au_{\pm}$	12.384(19) ns	1.7

Don't use the 6 BR meas. from Chiang;

- no implementation of radiative corrections
- 6 BR constrained to sum to unit.
- the correlation matrix not available.

 What about discarding many other old meas.?
- no recent meas. involving $BR(\pi\pi\pi)$
- fit instable if only recent are used.

B. Cox 42

Parameterization of K_{l3} form factors

KLOE KTeV NA48 ISTRA+

• Hadronic $K \rightarrow \pi$ matrix element is described by two form factors $f_{+}(t)$ and $f_{0}(t)$ defined by:

$$\langle \pi^{-}(k) | \bar{s} \gamma^{\mu} u | K^{0}(p) \rangle = (p+k)^{\mu} f_{+}(t) + (p-k)^{\mu} f_{-}(t)$$
$$f_{-}(t) = \frac{m_{K}^{2} - m_{\pi}^{2}}{t} \left(f_{0}(t) - f_{+}(t) \right)$$

- •Experimental or theoretical inputs to define *t*-dependence of $f_{+,0}(t)$.
- $f_{-}(t)$ term negligible for K_{e3} .

$$\tilde{f}_{+,0}(t) \equiv \frac{f_{+,0}(t)}{f_{+}(0)} = 1 + \lambda'_{+,0} \frac{t}{m_{\pi}^2} + \frac{1}{2} \lambda''_{+,0} \left(\frac{t}{m_{\pi}^2}\right)^2 + \dots$$

 λ' and λ'' are strongly correlated: -95% for $f_{+}(t)$, and -99.96% for $f_{0}(t)$

•Pole parameterization:
$$\tilde{f}_{+,0}(t) = \frac{M_{V,S}^2}{M_{V,S}^2 - t}$$

• Dispersive approach plus $K\pi$ scattering data for both $f_+(t)$ and $f_0(t)$

Vector form factor from K_{e3}

KLOE KTeV NA48 ISTRA+

Quadratic expansion

- Measurements from ISTRA+, KLOE, KTeV, NA48 with K_Le3 and K-e3 decays.
- Good fit quality: $\chi^2/ndf=5.3/6(51\%)$ for all data; $\chi^2/ndf=4.7/4(32\%)$ for K_L only
- The significance of the quadratic term is 4.2σ from all data and 3.5σ from K_L only.
- Using all data or K_L only changes the space phase integrals I_{e3}^0 and I_{e3}^{\pm} by 0.07%.
- Errors on I_{e3} are significantly smaller when K^- data are included.

<u>Pole parameterization</u> is in good agreement with present data:

$$\tilde{f}_{+}(t) = M_V^2/(M_V^2 - t)$$
, with $M_V \sim 892 \text{ MeV}$ $\lambda' = (m_{\pi +}/M_V)^2$; $\lambda'' = 2\lambda'^2$

- KLOE, KTeV, NA48 quote value for M_V for pole fit to K_I e3 data ($\chi^2/ndf=1.8/2$)
- The values for λ_{+}' and λ_{+}'' from pole expansion are in agreement with quadratic fit results.
- Using quadratic averages or pole fit results changes I_{e3}^0 by 0.03%.

<u>Dispersive parameterization</u> show improvements for $f_{+}(t)$, with good analytical and unitarity properties and a correct threshold behavior, (e.g. Passemar arXiv:0709.1235[hep-ph]) Dispersive results for λ_{+} and λ_{0} are in agreement with pole parameterization.

Vector and scalar form factor from $K_{\mu3}$

KLOE KTeV NA4 ISTRA+

- λ_{+}' , λ_{+}'' and λ_{0} measured for Kµ3 from ISTRA+, KLOE, KTeV, and NA48.
- new NA48 results are difficult to accommodate in the $[\lambda_{+}', \lambda_{+}'', \lambda_{0}]$ space.
- Fit probability varies from 1×10^{-6} (with NA48) to 22.3% (without NA48).

1σ contour for all the experimental results.

Fit without NA48

- Because of correlation, is not possible measure λ_0' at any plausible level of stat.
- Neglecting a quadratic term in the param. of scalar FF implies: $\lambda_0' \rightarrow \lambda_0' + 3.5 \lambda_0''$

Vector and scalar form factor from K₁₃

KLOE KTeV NA48 ISTRA+

• Slope parameters λ_+ ', λ_+ '' and λ_0 from ISTRA+, KLOE, KTeV, and NA48.

	K_L and K^-	K_L only
Measurements	16	11
χ^2/ndf	$54/13 \ (7 \times 10^{-7})$	$33/8 \ (8 \times 10^{-5})$
$\lambda'_+ imes 10^3$	$24.9 \pm 1.1 \ (S = 1.4)$	$24.0 \pm 1.5 \ (S = 1.5)$
$\lambda_+^{\prime\prime} imes 10^3$	$1.6 \pm 0.5 \ (S = 1.3)$	$2.0 \pm 0.6 \ (S = 1.6)$
$\lambda_0 imes 10^3$	$13.4 \pm 1.2 \ (S = 1.9)$	$11.7 \pm 1.2 \ (S = 1.7)$
$\rho(\lambda'_+,\lambda''_+)$	-0.94	-0.97
$\rho(\lambda'_+,\lambda_0)$	+0.33	+0.72
$\rho(\lambda''_+,\lambda_0)$	-0.44	-0.70
$I(K_{e3}^{0})$	0.15457(29)	0.1544(4)
$I(K_{e3}^{\pm})$	0.15892(30)	0.1587(4)
$I(K_{\mu 3}^{0})$	0.10212(31)	0.1016(4)
$I(K_{\mu 3}^{\pm})$	0.10507(32)	0.1046(4)
$\rho(I_{e3},I_{\mu3})$	+0.63	+0.89

Averages of quadratic fit results for Ke3 and Kµ3 slopes.

Space integral used for the $|V_{us}|f_{+}(0)$ determination

- Adding $K\mu 3$ data to the fit doesn't cause significant changes to I_{e3}^0 and I_{e3}^\pm .
- NA48: $\Delta[I(K\mu3)] = 0.6\%$, but Ke3+K μ 3 average gives $\Delta[V_{us}f_{+}(0)] = -0.08\%$.

Determination of $|V_{us}| \times f_{+}(0)$

Approx. contribution to % err from:

Average: $|V_{us}| f_{+}(0) = 0.2166(5)$ $\chi^2/\text{ndf} = 2.74/4 (60\%)$

6/27/08

B. Cox

Theoretical estimate of $f_{+}(0)$

KLOE KTeV NA48 ISTRA+

Leutwyler & Roos estimate still widely used: $f_{+}(0) = 0.961(8)$.

Lattice evaluations generally agree well with this value; use RBC-UKQCD07 value: $f_{+}(0) = 0.9644(49) (0.5\%$ accuracy, total err.).

Kl3:
$$|V_{us}| f_{+}(0) = 0.2166(5)$$
 and $f_{+}(0) = 0.964(5)$, obtain $|V_{us}| = 0.2246(12)$

V_{us}/V_{ud} determination from BR($K_{\mu 2}$)

KLOE NA48 ISTRA+

$$\frac{\Gamma(\pmb{K}_{\mu2(\gamma)})}{\Gamma(\pi_{\mu2(\gamma)})} = \frac{|\pmb{V}_{us}|^2}{|\pmb{V}_{ud}|^2} \times \frac{\pmb{f}_{K}}{\pmb{f}_{\pi}} \times \frac{M_{K}(1-m_{\mu}^{\ 2}/M_{K}^{\ 2})^2}{m_{\pi}(1-m_{\mu}^{\ 2}/m_{\pi}^{\ 2})^2} \times (1+\alpha(\pmb{C}_{K}-\pmb{C}_{\pi}))$$

Inputs from experiment

 $\Gamma(\pi, K_{l2(\gamma)})$ BR properly includes radiative effects; lifetimes

Inputs from theory

 $C_{K,\pi}$ Rad. includes EW corr. f_K/f_{π} Not protected by the Ademollo-Gatto theorem: Lattice calculation of f_K/f_p and radiative corrections benefit of cancellations.

• Use HPQCD-UKQCD07 value: $f_{K}/f_{p} = 1.189(7)$.

K12: $|V_{us}|/|V_{ud}|f_K/f_{\pi} = 0.2760(6)$ and $f_K/f_{\pi} = 1.189(7)$, obtain $|V_{us}|/|V_{ud}| = 0.2321(15)$

$V_{\rm ud}$, $V_{\rm us}$ and $V_{\rm us}/V_{\rm ud}$

KLOE KTeV NA48 ISTRA+

|Vus| = 0.2246(12), |Vus|/|Vud|=0.2321(15) Vud = 0.97418(26) from nuc. β decay: [Hardy-Towner, nucl-th 0710.3181]

Fit (no CKM unitarity constraint)

$$V_{ud} = 0.97417(26); V_{us} = 0.2253(9)$$

 $\chi^2/ndf = 0.65/1 (41\%)$
Unitarity: 1- V_{ud}^2 - $V_{us}^2 = 0.0002(6)$

• The test on the unitarity of CKM can be also interpreted as a **test of the universality of lepton and quark gauge coupling**:

$$G_{\text{CKM}} \equiv G_{\mu} \left[|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \right]^{1/2}$$

= $(1.1662 \pm 0.0004) \times 10^{-5} \text{ GeV}^{-2}$
 $G_{\mu} = (1.166371 \pm 0.000007) \times 10^{-5} \text{ GeV}^{-2}$

Fit (with CKM unitarity constraint)

$$V_{us} = 0.2255(7) \chi^2/ndf = 0.8/2 (67\%)$$

B. Cox 50

V_{us} **Summary**

- Dominant K_S , K_I , and K^{\pm} BRs, and lifetime known with very good accuracy.
- Dispersive approach for form factors.
- Constant improvements from lattice calculations of $f_+(0)$ and f_K/f_π : Callan-Treiman relation allows checks from measurements; syst errors often not quoted, problem when averaging different evaluations.
- $|V_{us}| f_{+}(0)$ at 0.2% level.
- $|V_{us}|$ measured with 0.4% accuracy (with $f_{+}(0)$ = 0.9644(49)) Dominant contribution to uncertainty on $|V_{us}|$ still from $f_{+}(0)$. CKM unitarity test satisfied at 0.3 σ level test of lepton-quark universality
- Comparing $|V_{us}|$ values from K μ 2 and K13, exclude large region in the $(m_{H^+}, \tan\beta)$ plane, complementary to results from B $\rightarrow \tau \nu$ decays.
- •Test of Lepton Universality with K13 decays with 0.5% accuracy.

V. New Results contributing to ChPT

KLOE KTeV NA48

V. New Kaon Results on ChPT

NA48/2 recent results in charged Kaon decays

- K[±]→ π[±]e⁺e⁻ BR and Form Factors (preliminary)
- K[±] → π[±]γγ BR and kinematics (preliminary)
- K[±] → π[±]e⁺e⁻γ Branching Ratio (final)

KTeV "recent" results in neutral Kaon decays

- $K_L \rightarrow \pi^0 e^+ e^-$ BR (99 data to be added) $K_L \rightarrow \pi^0 \gamma \gamma$ BR and kinematics (final) $K_L \rightarrow \pi^0 e^+ e^- \gamma$ Branching Ratio (final)

KLOE recent results in neutral Kaon decays

K_S → γγ Branching Ratio (final)
 K_S → e⁺e⁻ Direct Search, Upper Limit (final)
 K_L → πeνγ Branching Ratio (final)

KTeV NA48

NA48/2: $K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-}$

KTeV: $K_L \rightarrow \pi^0 e^+ e^-$

$K^{\pm} \rightarrow \pi^{\pm} \gamma^{*} \rightarrow \pi^{\pm} e^{+} e^{-}$ Theoretical Framework

NA48/2

- ✓ suppressed FCNC processes
- ✓ one-photon exchange
- ✓ useful test for ChPT

 $d\Gamma_{\pi ee}/dz \sim P(z) \cdot |W(z)|^2$

 $z=(M_{ee}/M_K)^2$, P(z) phase space factor

Form-factor models:

(1) polynomial: $W(z) = G_F M_K^2 \cdot f_0 \cdot (1 + \delta z)$

(2) ChPT O(p⁶): $W(z) = G_F M_K^2 \cdot (a_+ + b_+ z) + W^{\pi\pi}(z)$

(3) Dubna ChPT: $W(z) = W(M_a, M_o, z)$

(2) D'Ambrosio et al. JHEP 8 (1998) 4 (3) Dubnickova et al. hep-ph/0611175

 (f_0,δ) or (a_+,b_+) or (M_a,M_ρ) determine a model-dependent BR

- Parameters of models and BR in full kinematical range
- Model-independent BR (z > 0.08) in visible kinematical range
 6/27/08

 B. Cox

 55

Data $K^{\pm} \rightarrow \pi^{\pm} \gamma^{*} \rightarrow \pi^{\pm} e^{+} e^{-}$

NA48/2

7146 events (M_{ee} >140 MeV) (BG 0.6%) | | 12.23 x 10⁶ events (BG 0.15%)

- The BR is measured normalizing to $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}_{D} \rightarrow \pi^{\pm} e^{+} e^{-} \gamma$
 - → particle ID efficiencies cancel at first order
- common selection criteria for signal and normalization channel
- → 3 track vertex, electron (pion) ID with E/p > 0.95 (< 0.85) $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}_{D}$ BG suppressed using a kinematical cut $M_{ee} > 140$ MeV

6/27/08 56

Fit results (preliminary)

NA48/2

polynomial: $W(z) = G_F M_K^2 \cdot f_0 \cdot (1 + \delta z)$

ChPT $O(p^6)$: $W(z) = G_F M_K^2 \cdot (a_+ + b_+ z) + W^{\pi\pi}(z)$

Dubna ChPT:W(z) = W(M_a , M_o z)

(1)
$$\begin{cases} \delta = 2.35 \pm 0.18 \\ f_0 = 0.532 \pm 0.016 \\ (\delta, f_0) = -0.963 \end{cases}$$

$$\begin{cases} a_+ = -0.579 \pm 0.016 \\ b_+ = -0.798 \pm 0.067 \\ (a_+, b_+) = -0.913 \end{cases}$$

$$\begin{cases} M_a = (0.965 \pm 0.033) \text{ GeV} \\ M_{\rho} = (0.711 \pm 0.013) \text{ GeV} \\ (M_a, M_{\rho}) = 0.998 \end{cases}$$

Model-Independent BR computed by integrating dG/dz BR_{MI} (z>0.08) = (2.26±0.08)x10-7

BR1 =
$$(3.02 \pm 0.04stat)$$
 $^{\prime}$ $^{\prime}$ 10⁻⁷
BR2 = $(3.11 \pm 0.04stat)$ $^{\prime}$ $^{\prime}$ 10⁻⁷
BR3 = $(3.15 \pm 0.04stat)$ $^{\prime}$ 10⁻⁷

6/27/08

B. Cox

Results – BR in full kinematic range

NA48/2

BR= $(3.08\pm0.04$ stat ±0.04 syst ±0.08 ext ±0.07 model)× 10^{-7} = (3.08 ± 0.12) × 10^{-7}

Including the uncertainty due to the model dependence (preliminary)

Measurement	BR×10 ⁷
Bloch et al., PL 56 (1975) B201	2.70±0.50
Alliegro et al., PRL 68 (1992) 278	2.75±0.26
Appel et al. [E865], PRL 83 (1999) 4482	2.94±0.15
NA48/2 preliminary (2008)	3.08±0.12

First measurement of CPV parameter (correlated K⁺/K⁻ uncertainties excluded)

$$\Delta(K_{\pi ee}^{\pm}) = (BR^{+}-BR^{-})/(BR^{+}+BR^{-})$$

= (-2.1 ± 1.5stat ± 0.3syst)%

Results – FF slope δ

NA48/2

- NA48/2 measurement of δ good precision compatible with earlier results
- Contradiction of the data to VMD further confirmed
- NA48/2 values of (f₀, a₊, b₊)
 in agreement with BNL E865

Measurement	Process	Result
Alliegro et al., PRL 68 (1992) 278	K⁺→π⁺e⁺e⁻	1.31±0.48
Appel et al. [E865], PRL 83 (1999) 4482	K⁺→π⁺e⁺e⁻	2.14±0.20
Ma et al. [E865], PRL 84 (2000) 2580	K⁺→π⁺μ⁺μ⁻	2.45 ^{+1.30} _{-0.95}
NA48/2 preliminary (2008)	K±→π±e+e−	2.35±0.18

$K_L \rightarrow \pi^0 \gamma^* \rightarrow \pi^0 e^+ e^-$ Theoretical Framework

Direct CPV penguin 2.8-6.5x10⁻¹²

CP Conserving ~O(P⁶)
1-3x10⁻¹²

Indirect CPV \$\partial x(1-3)x10^{-12}\$

Results: K_L→π⁰e⁺e⁻ Search

Two events observed in signal region

Total expected background from K_L→π⁰π⁰_D 1.06±0.41 events

BR(
$$K_L \rightarrow \pi^0 e^+ e^-$$
)<5.1x10⁻¹⁰

Only 1997 data 1999 data analysis in progress

NA48/2
$$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$$

 $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma * \rightarrow \pi^{\pm} \gamma e^{+} e^{-}$

KTeV:
$$K_L \rightarrow \pi^0 \gamma \gamma$$

 $K_L \rightarrow \pi^0 \gamma \gamma * \rightarrow \pi^0 \gamma e^+ e^-$

K [±]→π [±]γγ Theoretical Framework

NA48/2

$$\frac{\partial^2 \Gamma}{\partial y \partial z} = \frac{m_{K^+}}{(8\pi)^3} \left[z^2 \left(A + B \right)^2 + \left(C \right)^2 \right) + \left(y^2 - \frac{1}{4}\lambda \left(1, r_\pi^2, z \right) \right)^2 \left(B \right)^2 + \left(D \right)^2 \right)$$

relevant only at low m,

$$z = \frac{(q_1 + q_2)^2}{m_{K^+}^2} = \frac{m_{\gamma\gamma}^2}{m_{K^+}^2} \qquad \qquad y = \frac{p \cdot (q_1 - q_2)}{m_{K^+}^2}$$

$$y = \frac{p \cdot (q_1 - q_2)}{m_{K^+}^2}$$

 $A(z) \rightarrow loop diagrams contribution$

C(z) → Wess-Zumino-Witten functional (10%)

B=D=0

[G. Ecker, A. Pich and E. de Rafael, Nucl., Phys. B303 (1988), 665]

unitarity corrections effects can increase the BR by 30-40 %

[G. D'Ambrosio and J. Portoles, Nucl., Phys. B386 (1996), 4031

Mγγ Spectrum from K ${}^{\pm}$ \rightarrow π ${}^{\pm}$ γγ) dependence on \hat{c}

NA48/2

- Both decay spectrum and rate strongly depend on the single ĉ parameter
- The M_{yy} spectrum has a pronounced cusp-like behaviour $at 2\pi$ threshold.

$$\Gamma(K^{\pm} \to \pi^{\pm} \gamma \gamma) = \Gamma_{loop} + \Gamma_{WZW} \begin{cases} \Gamma_{loop} = (2.80 + 0.87 \cdot \hat{c} + 0.17 \cdot \hat{c}^2) \times 10^{-23} \; GeV \\ \Gamma_{WZW} = 0.26 \times 10^{-23} \; GeV \end{cases}$$

[G. D'Ambrosio and J. Portoles, Nucl., Phys. B386 (1996), 403]

6/27/08 B. Cox 64

$K \xrightarrow{\pm} \pi \pi \pi \gamma \gamma$ data

NA48/2

preliminary

Data
MC K[±] → π[±] γ γ
MC K[±] → π[±] π⁰ γ

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36

m_{γγ} [GeV/c²]

1164 events in 40% of the full data ~40 times larger wrt to world sample 3.3% BG mainly from ππγ(IB)

The only previous measurement (E787), based on 31 events (5 BG events)

BR= $(1.10\pm0.32)\cdot10-6$; $\hat{c}=1.8\pm0.6$

$$BR_{(O(p6),\hat{c}=2)} = (1.07 \pm 0.04_{stat} \pm 0.08_{sys}) \cdot 10^{-6}$$

- MC O(p⁶) and ĉ=2 comparison data shape follows ChPT prediction
- Model independent measurement and extraction of ĉ is ongoing

6/27/08 B. Cox

K [±]→π [±]e⁺e⁻γ - first observation

NA48/2

120 candidate events (6.1% BG)

never observed before!! Data $K^{+} \rightarrow \pi^{+}\pi^{0}p$ $K^{+} \rightarrow \pi^{+}\pi^{0}e^{+}e^{-}$ $K^{+} \rightarrow \pi^{+}\pi^{0}\pi^{0}$ $K^{+} \rightarrow \pi^{+}\pi^{0}\pi^{0}$ $K^{+} \rightarrow \pi^{+}\pi^{0}\pi^{0}$ $K^{+} \rightarrow \pi^{+}\pi^{0}\pi^{0}$ $K^{+} \rightarrow \pi^{+}\pi^{0}\pi^{0}$

Model-independent BR (M_{gee} > 260 MeV/c²)

BR($\pi^{\pm}e^{+}e^{-}\gamma$)=(1.19±0.12_{stat}±0.04_{svs})·10⁻⁸

Shape analysis [ChPT $O(p^6)$ model, F. Gabbiani, PRD59 (1999) 094022]:

0.25

0.3

Invariant e⁺e⁻y mass [GeV/c²]

0.35

66

[final result published, PLB659 (2008) 493]

K_L → π^0 γγ + K_L → π^0 eeγ Theoretical Framework

- Tests of ChPT
 - No free parameters in branching ratio to O(p⁴)
 - O(p⁶) terms include Vector Meson exchange terms (strength of which is described by A_v)
 - O(p⁶) terms increase branching ratios by factor of 2-3
- A_V determines CP conserving part of $K_L \rightarrow \pi^0 I^+ I^-$
 - CP conserving part is from K_L → $\pi^0\gamma^*\gamma^*$
- Indirect CP violating part of K_L→π⁰I⁺I⁻ determined by Br(K_S→π⁰I⁺I⁻)

K_L → π^0 γγ Data

Physical Review D77, No.11(June1, 2008)

- Selection requirements:
 - Require 4 photon clusters in CsI,
 each with an energy > 2.0 GeV
 - Require energy center to be in vacuum beam hole in Csl
 - Rejects events from mixed
 K_I -K_S regenerator beam
 - Two photons must reconstruct to within 3 MeV/c² of the π^0 mass, while the other two must <u>not</u>.
- Normalize with K_I →π⁰π⁰
 - Same final state

KTeV: Br(
$$K_L \rightarrow \pi^0 \gamma \gamma$$
) = $(1.29 \pm 0.03_{stat} \pm 0.05_{syst}) \times 10^{-6}$
NA48: Br($K_L \rightarrow \pi^0 \gamma \gamma$) = $(1.36 \pm 0.03_{stat} \pm 0.03_{syst} \pm 0.03_{norm}) \times 10^{-6}$

$K_L \rightarrow \pi^0 e^+ e^- \gamma Data$

139 events (Bkg:14.4 +/- 2.5 events)

Selection requirements...

Require 2 tracks and 3 neutral CsI clusters Two neutral clusters must combine to an invariant mass near the π^0 mass Neutral decay vertex used to compute:

- $M_{ee\gamma}$, $M_{ee\gamma\gamma\gamma}$
- Mass resolution with neutral vertex is better than charged vertex since e⁺ and e⁻ tracks are very close
- None of the 3 possible ee γ solutions reconstruct to a π^0 .
- Normalize using $K_L \rightarrow \pi^0 \pi^0_D$

 $Br(K_L \rightarrow \pi^0 e^+ e^- \gamma) = (1.62 \pm 0.14_{stat} \pm 0.09_{syst}) \times 10^{-8}$

CHPT 0(p⁶) predicts 1.51 X 10⁻⁸

Extracting A_v

•
$$K_L \rightarrow \pi^0 \gamma \gamma$$

 Maximum likelihood fit to the two Dalitz parameters:

$$-Z_{Dalitz}=m_{34}^2/M_K^2$$

$$-Y_{\text{Dalitz}}=(E_{\gamma 3}-E_{\gamma 4})/M_{\text{K}}$$

•
$$K_L \rightarrow \pi^0 ee\gamma$$

 Maximum likelihood fit to the three Dalitz parameters:

$$-Z_{\text{Dalitz}} = M_{\text{ee}\gamma}^2 / M_{\text{K}}^2$$

$$- Y_{Dalitz} = (E_{\gamma} - E_{ee})/M_{K}$$

$$- Q_{Dalitz} = M_{ee}^2/M_K^2$$

Data + Best Fit

Results for A_V

Vector Meson Exchange Amplitude

• Values imply that $K_L \rightarrow \pi^0 I^+ I^-$ is indeed dominated by CPV terms

KLOE: Measurement of BR($K_S \rightarrow \gamma \gamma$) Search for $K_S \rightarrow e^+e^-$ Measurement of BR($K_L \rightarrow \pi e \nu \gamma$)

Motivation to study $K_s \rightarrow \gamma \gamma$

- Important probe of ChPT
- Decay amplitude evaluated at leading order, O(p⁴)

$$BR(K_S \rightarrow \gamma \gamma) = 2.1 \times 10^{-6}$$

D'Ambrosio and Espriu, Phys.Lett.B 175(1986) 237 Kambor and Holstein, Phys.Rew.D 49(1994) 2346

- No full O(p⁶) calculation exists
- Experimental value of the BR changed along the years,
- improving in precision
- Most recent measurement by NA48/1

```
BR(K_S \rightarrow \gamma \gamma) = (2.78±0.06±0.04) x 10<sup>-6</sup>
```

■ Differs from ChPT O(p⁴) by 30% possible large O(p⁶) contribution

In NA48, the $K_L \rightarrow \gamma \gamma$ background is a relevant component of the fit

In KLOE, the background from K_L is reduced to zero (tagging)

K_s→γγ Analysis Strategy

Main background $\rightarrow K_s \rightarrow 2\pi^0$ with 2 photons lost in the beam-pipe and/or colliding into QCAL

veto these photons using a cut on arrival time

 $\Delta T = |T_{OCAL} - R_{OCAL}/c| < 5 \text{ ns}$

Background reduction to 70 %

Determine signal events by fitting M_{yy} and $\cos \theta^*_{yy}$ in the K_s cms

$$N_{sig} = 711 \pm 35$$
 (4.9% stat. error)

700 x 10⁶ K_S events after K₁ tag

B. Cox

6/27/08

Result: BR($K_S \rightarrow \gamma \gamma$)

now published: [JHEP05 (2008) 05]

NA48 Coll., Phys. Lett. B551 (2003) 7 NA48 Coll., Phys. Lett. B493 (2000) 29 NA31 Coll., Phys. Lett. B351 (1995) 579

There is a 3 σ discrepancy between KLOE and NA48 results

- •The NA48 measurement implies the existence of a sizeable O(p⁶) counterterm in ChPT
- The KLOE result makes this
- contribution practically negligible

BR(K_S
$$\rightarrow \gamma \gamma$$
) = (2.26 ± 0.12_{stat} ±0.06_{sys})·10⁻⁶

Search for FCNC in $K_S \rightarrow e^+e^-$

Exotic mediators could produce tree level FCNC processes

• Precise SM ChPT, O(p4) prediction:

BR(
$$K_s \rightarrow e^+e^-$$
)=1.6 x 10⁻¹⁵

[Ecker and Pich, Nucl. Phys. B366, 189, 1991]

BR(
$$K_s \rightarrow e^+e^-$$
) < 1.4 x 10⁻⁷ (90% C.L.)

- •Signal identification using a χ^2 variable based on time of particles, E/p and cluster position
- Background rejection by kinematic cuts
- •Signal box defined in the plane χ^2 vs M_{inv} (e⁺e⁻ hypothesis))

Result: Upper Limit for $K_S \rightarrow e^+e^-$

NO events found in the signal box Upper Limit evaluated normalizing to the number of $K_S \to \pi^+\pi^-$ events

 $BR(K_S \rightarrow e^+e^-) < 9.3 \times 10^{-9} (90\% C.L.)$

Previous result improved by more than one order of magnitude

B. Cox

$\textbf{K}_{\textbf{L}} \rightarrow \pi e \nu \gamma$

$$\begin{split} R \equiv \frac{\Gamma(K_{e3\gamma}^0; E_{\gamma}^* > 30 \text{ MeV}, \theta_{\gamma}^* > 20^\circ)}{\Gamma(K_{e3}^0)} \\ \frac{d\Gamma}{dE_{\gamma}^*} \simeq \frac{d\Gamma_{\text{IB}}}{dE_{\gamma}^*} + \langle X \rangle f(E_{\gamma}^*) \end{split}$$

A 2-dimensional fit in $(E_{\gamma}^{*}, \theta_{\gamma}^{*})$ allow to measure both R and <X>

R =
$$(924 \pm 23 \pm 16) \times 10^{-5}$$

 $\langle X \rangle = -2.3 \pm 1.3 \pm 1.4$

R =
$$(944 \pm 14) \times 10^{-5}$$

 $\langle X \rangle = -2.8 \pm 1.8$

arXiv:0710.3993

With ChPT constraint

Largely dominated by IB, negligible DE Interference IB-DE small (1%)

→ test of ChPT O(p⁶)

NA48 Coll., Phys.Lett. B605 (2005) 247 KTeV Coll., Phys. Rew. D71 (2005) 012001

ChPT Summary

The NA48/2, KLOE and KTeV experiments have obtained important new experimental inputs to the Chiral Perturbation Theory, the effective theory of strong interaction at low energy

- •KTeV neutral kaon sector
 - •Precise study of $K_1 \rightarrow \pi^{\pm} \gamma \gamma$ decay (final)
 - •Precise study of $K_1 \rightarrow \pi^{\pm} \gamma e^{+}e^{-}$ decay (final)
- •NA48/2 charged kaon sector
 - •Precise study of the $K^{\pm} \rightarrow \pi^{\pm} e^{+} e^{-}$ decay (preliminary)
 - •Precise study of the $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ decay (preliminary)
 - •First observation of the $K^{\pm} \rightarrow \pi^{\pm} \gamma e^{+} e^{-}$ decay (final)
- •KLOE neutral kaon sector
 - •Measurement of $K_s \rightarrow \gamma \gamma$ decay (final)
 - •Upper limit for K_S→ e⁺e⁻ decay (final)
 - Measurement of decay (final)

Conclusions

- No new physics evidence
- Final ε'/ε prime result from KTeV: (high precision; can someone calculate this?)
- No breaks in e,µ universality
- First row CKM unitarity is better and better satisfied
- Many new results bearing on ChPT
- Many more new results to come

Do we have a flavor problem? Where are all these new particles?

Many thanks to the following

Guiseppina Anzivino

Paolo Massarotti

Matthew Moulson

Michael Ronquest

Tommaso. Spadaro - INFN/LFN

Elizabeth Worcester

- Perugia University and INFN

- Naples University and INFN

- INFN/I FN

- University of Virginia/North Carolina

- University of Chicago

B. Cox