

Low Emittance Muon Accelerator: stato e prospettive

M. Antonelli for the LEMMA Team

Tonelli Guido	10	PI
Benato Lisa	15	PD
Bertolin Alessandro	5	PD
Checchia Paolo	10	PD
Lucchesi Donatella	30	PD
Lujan Paul	15	PD
Lupato Anna	10	PD
Morandin Mauro	5	PD
Rossin Roberto	10	PD
Sestini Lorenzo	30	PD
Zanetti Marco	25	PD
Gonella Franco	20	PD
Anulli Fabio	20	RM1
Collamati Francesco	40	RM1
Migliorati Mauro	15	RM1
Palumbo Luigi	20	RM1
Camattari Riccardo	30	FE
Guidi Vincenzo	10	FE
Vallazza Erik	50	TS
Antonelli Mario	20	LNF
Blanco Garcia Oscar	30	LNF
Guiducci Susanna	20	LNF
lafrati Matteo	100	LNF
Rotondo Marcello	20	LNF
Biagini Maria	20	LNF
Boscolo Manuela	60	LNF
Pellegrino Luigi	10	LNF

Low EMittance Muon Accelerator team

Additional national

 M. Ricci (Uni. Marconi, INFN-LNF), G. Cavoto (La Sapienza), E. Bagli (INFN-Fe), M. Prest, M. Soldani, (Uni-Insubria&INFN), A. Lorenzon (Uni. Padova)

Additional international

- P. Raimondi, S. Liuzzo, N. Carmignani (ESRF)
- R. Di Nardo, P. Sievers, M. Calviani, S. Gilardoni (CERN)
- I. Chaikovska, R. Chehab (LAL-Orsay)
- L. Keller, T. Markiewicz (SLAC)

Collaboration in **ARIES for WP 6 (**improving Accelerator PErformance and new Concepts), **WP 17** (PowerMat)

Participation to WP8 with alternative option: L. Serafini, C. Curatolo

Idea for low emittance μ beam

Conventional production: from **proton on target**

π, K decays from proton on target have typical P_{μ} ~ 100 MeV/c (π, K rest frame)

whatever is the boost, P_T will stay in Lab frame \rightarrow very high emittance at μ production point \rightarrow cooling needed!

Novel proposal: direct μ pair production: $e^+e^- \rightarrow \mu^+\mu^-$

just above the $\mu^+\mu^-$ production threshold ($\sqrt{s} \approx 0.212$ GeV) with minimal muon energy spread, with direct annihilation of ≈ 45 GeV e⁺ with atomic e⁻ in a thin target O(0.01 radiation length)

very small emittance at μ production point \rightarrow **no cooling** needed!

Advantages:

- **1.** Low emittance possible: $\theta\mu$ is tunable with \sqrt{s} in $e^+e^- \rightarrow \mu^+\mu^ \theta\mu$ can be very small close to the $\mu^+\mu^-$ threshold
- 2. Low background: Luminosity at low emittance will allow low background and low v radiation (easier experimental conditions, can go up in energy)
- **3. Reduced losses from decay:** muons can be produced with a relatively high boost in asymmetric collisions
- 4. Energy spread: muon energy spread also small at threshold, it gets larger as \sqrt{s} increases

Disadvantages:

• Rate: much smaller cross section wrt protons (\approx mb)

 $\sigma(e^+e^-\rightarrow \mu^+\mu^-) \approx 1 \ \mu b$ at most

Addressing Key topics for this scheme

- Low emittance and high momentum acceptance 45 GeV e⁺ ring: heavy activity in 2017
- O(100 kW) class target in the e⁺ ring for $\mu^+ \mu^-$ production: activity just started
- High rate positron source: ongoing activity
- High momentum acceptance muon accumulator rings: some item has been studied
- Validate with experimental test
 - Muon production: experiment @ H4 (1week July/August), continue next year
 - Target thermo-mechanical stresses: to start next year?
 - Beam recirculation in storage ring: proposal in progress

$\begin{array}{l} \mbox{Preliminary scheme for} \\ \mbox{low emittance } \mu \mbox{ beam production} \end{array}$

e+ ring parameter	unit	
Circumference	km	6.3
Energy	GeV	45
bunches	#	100
e⁺ bunch spacing = T _{rev} (AR)	ns	200
Beam current	mA	240
N(e⁺)/bunch	#	$3\cdot10^{11}$
U ₀	GeV	0.51
SR power	MW	120

(also 28 km foreseen to be studied as an option)

			LEMC-6TeV
	Parameter	Units	
6 LeV 11 collider	LUMINOSITY/IP	cm⁻² s⁻¹	5.09E+34
	Beam Energy	GeV	3000
	Hourglass reduction factor		1.000
draff Parameters	Muon mass	GeV	0.10566
	Lifetime @ prod	sec	2.20E-06
no lattice vet	Lifetime	sec	0.06
	c*tau @ prod	m	658.00
	c*tau	m	1.87E+07
	1/tau	HZ	1.60E+01
$\mu^+\mu^-$ rate = 9 10 ¹⁰ Hz [NIM A 807]		m	6000
$\epsilon_{\rm m} = 40 \rm nm$ $101-107 (2016)]$	Bending Field	I	15
	Bending radius	m T.m	667 10000
if: LHeC like e ⁺ source	Magnetic rigidity	IM	
with 25% mom accent e ⁺ ring	Gamma Lorentz Tactor		20392.90
	R α IP	m	
and ϵ dominated by μ production	Р _X С Г В О Г	m	0.0002
	Beta ratio		1.0
	Coupling (full current)	%	100
thanks to vorv small	Normalised Emittance x	m	4.00F-08
LIIdIIKS LU VELY SIIIdII	Emittance x	m	1.41E-12
emittance (and lower beta*)	Emittance v	m	1.41E-12
comparable luminosity with	Emittance ratio		1.0
	Runch longth (zero current)		0.1
lower Nµ/bunch	Bunch length (zero current)	mm	0.1
$(\rightarrow$ lower background)	Bunch length (full current)	mm	0.1
	Beam current	mA	0.048
	Revolution frequency	Hz	5.00E+04
	Revolution period	S	2.00E-05
	Number of bunches	#	1
Of course a design study	N. Particle/bunch	#	6.00E+09
		#	1.00
is needed to have a	ο _x @ ΙΥ	micron	1.68E-02
reliable estimate of	ี พ.ศ. พ.ศ. พ.ศ. พ.ศ. พ.ศ. พ.ศ. พ.ศ. พ.ศ.	micron	
nerformances		rad	0.39E-U5
performances	רא י _{צ'} ש וי	rad	0.39E-05

Preliminary low- β IR for muon target insertion

- @target location:
 - $D_x \approx 0$
 - low-β
- Further optimizations are underway:
 - match the transverse minimum beam size with constraints of target thermo-mechanical stress
 - match with other contributions to muon emittance (production, accumulation)
 - dynamic and momentum aperture can be optimized

2-3% e+ losses happen in the first turn

M. Boscolo, RD_F 03,

Evolution of e+ beam size and divergence

bremsstrahlung and multiple scattering artificially separated by considering alternatively effects in longitudinal (dominated by **bremsstrahlung**) and transverse (dominated by **multiple scattering**) phase space due to target; in **blue** the combination of both effects (realistic target)

Some bremsstrahlung contribution due to residual dispersion at target multiple scattering contribution in line with expectation: $\sigma IMS = 1/2 \sqrt{n} D \sigma MS \ell \beta$ one pass contribution due to the target: $\sigma IMS \ell = 25 \mu rad$

M. Boscolo, RD_FA meeting, Bologna, n_D number of damping turns

Target considerations

Beam size as small as possible (matching various emittance contribution), but

- constraints for power removal (200 kW) and temperature rise
- to contrast the temperature rise move target (for free with liquid jet) and e⁺ beam bump every 1 bunch muon accumulation
- Solid target: simpler and better wrt temperature rise
 - Be, C

[Kavin Ammigan 6th High Power Targetry Workshop]

- Be target: @HIRadMat safe operation with extracted beam from SPS, beam size 300 µm, N=1.7x10¹¹ p/bunch, up to 288 bunches in one shot
- Liquid target: better wrt power removal (200kW)
 - Li, difficult to handle lighter materials (H, He)

LLi jets examples from neutron production, Tokamak divertor
(200 kW beam power removal seems feasible), minimum beam size to be understood

H4 Experiment

- First experimental verification of positron induced low emittance muon beam
- Test mu pair production at threshold with e+ beam on target
 - Beam test in H4 (North Area) with a low intensity 45 GeV (Vs~0.215 GeV) e+ beam
- Goals:
 - Measure emittance of outcoming muon pairs
 - Measure production cross section as a function of Vs and other properties of the production process

EXPERIMENTAL SETUP

Mattia Soldani for the LEMMA team CERN PS/SPS User Meeting, August 3rd 2017

EXPERIMENTAL SETUP

Mattia Soldani for the LEMMA team CERN PS/SPS User Meeting, August 3rd 2017

INCIDENT BEAM IN THE SILICON DETECTORS

- Tracking systems installation on July 26th (Wed)
- Completion of the setup with calorimeters on July 28th (Fri)
- Very high intensity e⁺ beam (~ 4-5x10⁶ spill⁻¹ great job by Nikos!) from July 29th (Sat)

PULSE HEIGHT IN THE CALORIMETERS

CERN PS/SPS User Meeting, August 3rd 2017

CANDIDATE EVENTS IN THE $\,\mu\text{-}CHAMBER...$

chamber hits in events with one right track only

2018 activities

- Experiments in H4: 1 week assigned out of <u>2 requested</u> for 2017
 - **High intensity** (up to 5 x 10⁶ /spill) with amorphous targets
 - measure muon production rate and muons kinematic properties
 - Low intensity
 - measure beam degradation (emittance energy spectrum)
 - measure produced photons flux and spectrum
- Priority to High intensity
- Request 1-(2) weeks in 2018 for:
 - Complete original program of the 2017 experiment
 - Attempt muon production on crystals (see this year results)
- Exploring the possibility to perform tests at Fermilab

Target design

- Started informal collaboration with CERN STI group
- 2 meetings to discuss technical and political items

Solid Moving target

- Rotating disc
 - 24000 rpm
- Bunch spacing of $\Delta T=200$ ns
 - Bunch separation on target L = 50 μ m
 - 12500 bunches in 1 turn

ω = 24000 rpm

2018 activities

- Target termo-mechanical stresses:
 - Design and construction of target prototipe
- Test at small spot size ~20 μm (T rise):
 - 20 μm 10^11 e+ /bunch 100 hz at FACET
 - Additional possibility at SLAC under investigation
 - Sps extracted beam Hi-RadMat
- Power dissipation test
 - Would need accumulator
 - Check with Dafne linac

Test at storage ring: DAFNE

- Measure beam properties evolution with turns
- Preliminary studies with "siddartha" optics:

- Small momentum aperture use thin target (Be \sim 10-100 μ m)
- Possibility to inject at 2 hz

Test at storage ring: DAFNE Tracking

First multi-turn simulation

Funding requests

•	Мі	ssioni		
				fe
	•	Test beam H4	28.5 Keuro	In
	٠	Contatti per di	segno targhette 2 Keuro	ро
	٠	Riunioni e con	f. 3 Keuro x sezione	pi
	•	Test tenuta tai	rghette 5 Keuro	rn
•	Со	nsumo:		ts
	٠	Targhetta	10 Keuro	
	•	Cristalli	4 Keuro	

	h4	targhette
fe	3	
Inf	9	5
pd	9	
pi	1	
rm1	5	
ts	1,5	
	28,5	5

Conclusion

- Heavy activity on 2017:
 - Accelerator
 - Accelerator complex idea
 - preliminary e+ ring design and multiturn tracking
 - First e+ source study
 - Target and mu accumulation investigations
 - Experiments
 - Muon production experiment performed
- Many ideas for 2018...
 - Continue acceleraror design
 - H4 test beam run-2
 - Attempt to test target termo-mechanical stresses
 - Study tests at DAFNE