

FOOT emulsion spectrometer

Giovanni De Lellis University Federico II and INFN, Naples

- electronic detectors and magnetic spectrometer to identify and measure fragments heavier than ⁴He (angular acceptance +/- 10°)
- emulsion spectrometer to measure the production of light charged fragments up to about 70°

FOOT Emulsion Spectrometer

- Start counter ECC
- To measure fragments with Z <= 3 emitted within a wide angular acceptance (up to 70 degrees)</p>
- Beam monitor > Detector based on the concept of Emulsion Cloud Chamber – ECC
 - Nuclear emulsion films sensitive to ionizing particles. Films are interleaved with passive material
 - Emulsion films produced at Nagoya
 - ECC integrates target and detector in a very compact setup and provides a very accurate reconstruction of the interactions occurring inside the target
 - New generation fully-automated optical microscopes developed in Naples are capable of reconstructing the fragments produced in the ECC

G. De Lellis et al., Nuclear Emulsions. In Fabjan, C.W.& Schopper, H.(eds) Detectors for Particles and Radiation. Part 1: Principles and Methods, 262–287 (Springer Berlin Heidelberg 2011).

FOOT Emulsion Spectrometer: past experience

- Istituto Nazionale di Fisica Nucleare
- The emulsion technique already exploited to study the fragmentation of Carbon ions in polycarbonate at HIMAC (Chiba, Japan): identification of the secondary nuclei produced by fragmentation of 400 MeV/n ¹²C achieved with high significance

OPERA films

Within the FIRST experiment: large angle fragmentation and momentum measurements of a 400 MeV/n ¹²C beam impinging on a composite target performed by using two ECC detectors to cover a range from 34° to 81° with respect to the beam axis

FOOT Emulsion Spectrometer: Layout

Total emulsion flims: ~ 90

Section 3: alternated layers of emulsions and lead/passive material

- Momentum measurement by range and Multiple Coulomb Scattering (MCS)
- Isotopic identification

Depth Z (cm)

FOOT Emulsion Spectrometer: Charge

SECTION 2 Charge identification

(~1 cm)

. . .

R0

R1

R2

- Charge identification for low Z fragments (H, He, Li)
- Emulsion will have a different thermal treatment according to its position in the elementary cell:

• R0:

- Not refreshed
 Sensitive to m.i.p.
- R1:
 - Appropriate refreshing for protons

R0

R1

R2

RO

R1

R2

- Sensitive to protons
- R2:
- Appropriate refreshing for He
- Sensitive to He

9

4.5

13

6.5

20

G. De Lellis et al. JINST 2, 2007, P06004

3

3.3

Cells

H-He

✓ New emulsion batches are under characterization (beam exposure at LNS – Catania, IT – and at Proton Therapy Center – Trento, IT) to tune the thermal treatment required for the charge separation at Z ≤ 3 8

Test @ LNS, 19-26 July 2017

✓Aim:

- ✓ Assess the optimal refreshing condition for charge separation at $Z \le 3$ with the new emulsion batches
- ✓ develop the algorithm to identify isotopes by combining MCS and range measurements and validate it with data
- ✓ Two emulsion spectrometer structures for corresponding exposures:
 - 20 Emulsion Pairs: each consisting of two emulsion films (5 cm × 4 cm) sealed with a light tight aluminium envelope and exposed to 80 MeV p, D, He and C;
 - 2 ECC with 21 emulsion films (5 cm \times 4 cm) interleaved with 20 stainless steel layers (0.5 mm thick) packed with a light tight aluminium envelope. Exposed to protons and Deuterium for mass identification

80 MeV He equivalent to Li at the typical FOOT energies 47 MeV p equivalent to He at the typical FOOT energies \rightarrow not delivered Maximum energy – 80 MeV \rightarrow protons of the FOOT energy unavailable

Genviro®

Refreshing machine at LNGS

Commissioning in dark room at LNGS during a preparatory phase

Testing the procedure (24 h at 95% R.H. and 28 °C) with films exposed to cosmic-rays

T2016_R0_1

T2016_R1_1

IFN

- Temperature range: $[-70, 180]^{\circ}C (\pm 0.1, \pm 0.3)$
- Humidity range: $[10, 98]\% (\pm 0.5 \div \pm 1.5)$ •
- Inner Volume: 550x400x550 cm³ (120 L)

Test at LNS: experimental set-up

Beam Monitor by the Perugia group: silicon microstrip detector (strip pitch 250 μ m, thickness 350 μ m, total area 8x8cm²)

Counter by the Perugia group: beam intensity registered by a CMOS detector (up to 3 MHz)

Main difficulties coped with: make the beam uniform over the emulsion surface and reduce the beam intensity down to 10^3 particles/cm²

Refreshing and chemical development @ LNGS

R1 refreshing: 24 hours at 95 % R.H. and 28°C; The process erases Minimum Ionizing Particles and the emulsion films become sensitive to particles with higher ionization (e.g. protons)

R2 refreshing: 24 hours at 95 % R.H. and 34, 36, 38°C; The process makes the emulsions sensitive to particles with higher ionization, as helium ions. Test the optimal configuration

Exposure at: 47 MeV protons, not delivered at LNS last July 200 MeV protons, relevant for FOOT

Extra activity in 2017 at TIFPA	KEuro
Run at Trento (3 persons for 7 days: 3 days for exposure at Trento, 4 days for emulsions chemical development at Gran Sasso Lab) 7 x 150 € + 2 x 200 € (travel) ~ 1500 per person	4.5
Run cost at Trento	1.5
Total (k€)	6

FOOT emulsion spectrometer: 2018 data taking

Exposure of emulsion spectrometers with **C and C₂H₄ target** to C and O ion beams at \bigcirc

 \bigcirc

• Start counter: thin plastic scintillator (250 μm) providing the start signal of the TOF (100 ps)

Beam monitor: twelve layers of wires measuring beam direction and position (spatial resolution 140 μm)

The Emulsion facility at CERN

Dark room previously used by the CHORUS and OPERA experiment to perform:

- Target units assembling
- Emulsion development
- Glycerin treatment

Thermalized tanks for emulsion development

Other thermalised tanks brought from Japan

Exposure at O and C @200-400 MeV/n at Heidelberg Ion-Beam Therapy Centre

FOOT emulsion spectrometer: 2018 data taking

- > 2 Emulsion spectrometers with Carbon target
- ➤2 Emulsion spectrometers with Polyethylene target
- > Emulsion films from one exposure: ~ $400 \rightarrow 250 \times 400 \text{ cm}^2 = 10^{5} \text{ cm}^2 \rightarrow ~ 3$ months

of data taking with last generation microscope developed in Naples

Similar amount from the second exposure

> A new generation automated microscope dedicated to Foot is needed

New reconstruction software to extend track recognition angular acceptance from θ = 30° to θ = 72°, A. Alexandrov et al., JINST 10 (2015) no.11 P1100

Development of a new generation scanning system (NGSS) with new hardware: new objective lens (Nikon Plan Fluor 20X 0.75 NA) and CMOS digital camera (Mikrotron MC-4082camera) with a processing approach based on GPU (Graphics Processing Unit) extend the scanning speed up to 190 cm²/h (A. Alexandrov et al., JINST 11 - 2016 - 6002, A. Alexandrov et al., *Nature Scientific Reports* 7 - 2017 - 7310)

Scanning system hardware upgrade

"A new generation scanning system for the high-speed analysis of nuclear emulsions" in JINST 11 P06002 2016, doi:10.1088/1748-0221/11/06/P06002

Work Cycle Time (ms)

	2018 funding request		INFN
TA	SK in 2018	KEuro)
CN	1OS Sensor (Mikrotron MC-4082) + frame grabber (Matrox Radient eV-CXP)	12.5	
Pre	ecision Z stage with linear encoder Micos HPS-170	13.5	Microscope
Pre	ecision XY stage with linear encoder Micos V-731	16	
Ob	jective lens (Nikon Plan Fluor 20x 0.75 NA)	4.5 -	
Мо	otorized mechanics with a 3D stage for emulsion spectrometer	10	
Em	nulsion spectrometer packaging, oil for microscopy, chemicals for emulsion development	5	
Ru ass Sas	n at Heidelberg (3 persons for 3 weeks: first week at Gran Sasso Lab. for emulsion spectrometers sembly, second week exposure at Heidelberg, third week emulsions chemical development at Gran sso Lab.) (RUN_1) = 63 x 150 + 2 trips (300 euro) x 3 persons = 9450 + 1800	11.5 S	J
Ru ass Sas	n at Trento (3 persons for 3 weeks: first week at Gran Sasso Lab. for emulsion spectrometers sembly, second week exposure at Trento, third week emulsions chemical development at Gran sso Lab) (RUN_2) = 9450 + 1800	11.5	
2 c	collaboration meeting (2 days x 4 persons)	3.5	
2 N	vorkshop (2 days x 2 persons)	2	
То	tal (k€)	87	