Beyond Standard Model searches in B decays with ATLAS

> Semen Turchikhin¹ on behalf of ATLAS Collaboration

¹Joint Institute for Nuclear Research

The 17th International Conference on B-Physics at Frontier Machines La Biodala – Isola d'Elba, Italy 6–11 May 2018

- Studying heavy flavour decays provides an opportunity for indirect search for BSM physics
 - $b \rightarrow s(d)$ ll transitions occur via FCNC processes
 - Forbidden in SM at tree level and thus sensitive to New Physics contributions in the loop diagrams
- In this talk
 - Angular analysis of $B^0 \rightarrow \mu^+ \mu^- K^{*0}$ decay CERN-EP-2017-161, submitting to JHEP
 - Paper just released!
 - Measurement of the width difference in B⁰-B⁰ system JHEP 06 (2016) 081, arXiv:1605.07485
 - (briefly) Studying rare decays $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$ EPJC 76 (2016) 513, arXiv:1604.04263

$B^{0} \rightarrow \mu^{\dagger} \mu^{-} K^{*0}$ angular analysis

Introduction

- The decay is forbidden in SM at tree level, occurs via suppressed loop diagrams
- BR(B⁰ $\rightarrow \mu^{+}\mu^{-}K^{*0}) = (1.03\pm0.06)\times10^{-6} \rightarrow allows differential decay rates measurement$
 - Measured parameters: K^{*0} longitudinal polarization fraction F_L and angular parameters S_i, in bins of q² – dimuon mass squared
 - up to 3.4 σ deviation in P₅' was reported earlier by LHCb
 - Extracted from the fit to distributions of $m_{K\pi\mu\mu}$, $\cos\theta_{K}$, $\cos\theta_{L}$, ϕ
- **Data:** 20.3 fb⁻¹ collected by ATLAS at \sqrt{s} =8 TeV in 2012

Event selection

- Trigger: inclusive set of selections
 - single, di-, and tri-muon requirements
- Acceptance and mass cuts
 - |η(π,K,μ)| < 2.5
 - p_T(π,K) > 0.5 GeV, p_T(μ) > 3.5 GeV
 - m(Kπ) ∈ [846,946] MeV
 - m(Kπµµ) ∈ [5150,5700] MeV
- q² ranges studied
 - $q^2 \in [0.04, 6] \setminus [0.98, 1.1] \text{ GeV}^2 \text{signal}$
 - $q^2 \in [8, 11] \text{ GeV}^2 \text{control J}/\psi$
 - $q^2 \in [12, 15] \text{ GeV}^2 \text{control } \psi(2S)$
- Background suppression cuts
 - p_T(K^{*0}) > 3 GeV
 - τ/σ_τ > 12.75
 - cosθ > 0.999
 - χ²/n.d.f.(B⁰) < 2
- Multiple candidate treatment
 - choose best χ² candidate
 - smallest $|m(K\pi)-m_{PDG}(K^{*0})|/\sigma(m(K\pi)) \rightarrow residual mis-tag rate ~11%$

5/18

IINR

Angular fit model

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_L \mathrm{d}\cos\theta_K \mathrm{d}\phi \mathrm{d}q^2} = \frac{9}{32\pi} \left[\frac{3(1-F_L)}{4} \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1-F_L}{4} \sin^2\theta_K \cos 2\theta_L \right]$$
$$-F_L \cos^2\theta_K \cos 2\theta_L + S_3 \sin^2\theta_K \sin^2\theta_L \cos 2\phi$$
$$+S_4 \sin 2\theta_K \sin 2\theta_L \cos \phi + S_5 \sin 2\theta_K \sin \theta_L \cos \phi$$
$$+S_6 \sin^2\theta_K \cos \theta_L + S_7 \sin 2\theta_K \sin \theta_L \sin \phi$$
$$+S_8 \sin 2\theta_K \sin 2\theta_L \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_L \sin 2\phi \right]. \tag{1}$$

• Use optimized $P_i^{(\prime)}$ instead of S_i to reduce dependence on hadronic form factors

$$P_{1} = \frac{2S_{3}}{1 - F_{L}}$$

$$P_{2} = \frac{2}{3} \frac{A_{FB}}{1 - F_{L}}$$

$$P_{3} = -\frac{S_{9}}{1 - F_{L}}$$

$$P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_{L}(1 - F_{L})}}.$$

• Statistics is not sufficient for fitting the full distribution (1)

• Use trigonometric "folding" to reduce the problem to 4 sets of fits for 3 parameters each: F_L , S_3 (P_1) and one of $S_{j=4,5,7,8}$ ($P_{j=4,5,6,8}$ ')

• E.g. for
$$F_L$$
, S_3 , S_4 :

$$\begin{cases} \phi \to -\phi & \text{for } \phi < 0 \\ \phi \to \pi - \phi & \text{for } \theta_L > \frac{\pi}{2} \\ \theta_L \to \pi - \theta_L & \text{for } \theta_L > \frac{\pi}{2}, \end{cases}$$

- F_L , S_3 can be extracted from any of the fits \rightarrow use the one with the lowest systematics
- S₆ (A_{FB}) and S₉ cannot be extracted in this approach

Fitting procedure

• Extended ML fit with each of the fit variants in bins of q²

$$\mathcal{L} = \frac{e^{-N}}{n!} \prod_{i=1}^{n} \sum_{j} n_{j} P_{ij}(m_{K\pi\mu\mu}, \cos\theta_{K}, \cos\theta_{L}, \phi; \widehat{p}, \widehat{\theta}),$$

- **j** = 1, 2 for signal and combinatorial background PDFs
 - other exclusive sources of background are accounted for only for systematics
- Sequential fitting procedure
 - 0) Extract the mass and width parameters of B^0 from J/ ψ control region \rightarrow fix them
 - 1) Fit only the $m_{\kappa\pi\mu\mu}$ to extract the nuisance parameters: signal and background yields, background mass shape \rightarrow fix them
 - 2) Add the angular distributions and extract the parameters of interest F_L and $S(P^{(\prime)})$
- The procedure extensively validated using toy MC
- Bins of q²: [0.04, 2.0], [2.0, 4.0], [4.0, 6.0] GeV²
 - Also fit in [0.04, 4.0], [1.1, 6.0], [0.04, 6.0] GeV² to facilitate comparisons to various predictions and experiments

Fit projection

- Signal model: $P = \epsilon(\cos\theta_{\kappa})\epsilon(\cos\theta_{\iota})\epsilon(\phi) \times g(\cos\theta_{\kappa},\cos\theta_{\iota},\phi) \times G(m_{\kappa\pi\mu\mu})$
 - Angular acceptance: polynomials extracted from MC
 - Differential decay rate
 - Mass shape: Gaussian with per-candidate errors, fixed from cc control region
- Background model
 - Mass shape: exponential
 - Angular shapes: factorized into 1D terms 2nd order Chebyshev polynomials

IINR

8/18

Results

$B^{0}-\overline{B}^{0}$ system width difference

Introduction

- Standard model prediction for the width difference $\Delta \Gamma_d = \Gamma_d^{H} \Gamma_d^{H}$:
 - $\Delta \Gamma_{\rm d} = (0.45 \pm 0.08) \times 10^{-2}$
- World average before (BaBar, Belle, LHCb):
 - $\Delta \Gamma_{\rm d} = (0.1 \pm 1.0) \times 10^{-2}$
- Other independent measurements do not constrain $\Delta\Gamma_d$
 - It was shown that relatively large variations due to NP contributions would not break other SM tests
- Good independent test complementary to other measurements
- **Data:** 25.2 fb⁻¹ of \sqrt{s} = 7 and 8 TeV collected by ATLAS in 2011-2012
- Method: measuring the lifetime-dependent ratio of $B^0{}_d$ decays rates to $J/\psi K^{*0}$ and $J/\psi K^0{}_s$

Analysis strategy

• Time-dependent $B \rightarrow f$ decay rate

$$\Gamma[t, f] \equiv \sigma(B_q^0)\Gamma(B_q^0(t) \to f) + \sigma(\bar{B}_q^0)\Gamma(\bar{B}_q^0(t) \to f)$$

$$\propto e^{-\Gamma_q t} \left[\cosh \frac{\Delta \Gamma_q t}{2} + A_P A_{CP}^{dir} \cos(\Delta m_q t) + A_{\Delta \Gamma} \sinh \frac{\Delta \Gamma_q t}{2} + A_P A_{CP}^{mix} \sin(\Delta m_q t) \right]$$

- A_{P} is B/\overline{B} production asymmetry (due to presence of valence light quark)
- A_{CP}^{dir} , $A_{\Delta\Gamma}$, and A_{CP}^{mix} are well defined for either CP- or flavour-specific states:
 - $J/\psi K_{S}^{0} CP$ state: $A_{CP}^{dir} = 0$, $A_{\Delta\Gamma} = \cos 2\beta$, $A_{CP}^{mix} = -\sin 2\beta$
 - $J/\psi K^{*0}$ flavour state: $A_{CP}^{dir} = 1$, $A_{\Delta\Gamma} = 0$, $A_{CP}^{mix} = 0$
- For $J/\psi K^{0}_{s}$:

$$\Gamma[t, J/\psi K_S] \propto e^{-\Gamma_d t} \left[\cosh \frac{\Delta \Gamma_d t}{2} + \cos(2\beta) \sinh \frac{\Delta \Gamma_d t}{2} - A_P \sin(2\beta) \sin(\Delta m_d t) \right]$$

- used to extract the $\Delta\Gamma_{d}$
- A_p can be also extracted from data
- For J/ψK^{*0} + J/ψK̄^{*0}:

$$\Gamma[t, J/\psi K^{*0}] \propto e^{-\Gamma_d t} \cosh \frac{\Delta \Gamma_d t}{2}$$

- provides normalization of the above to reduce the systematics uncertainties
- terms corresponding to production asymmetry and CPV in mixing are ~10⁻³-10⁻⁴ and neglected

Extraction of signal yields

• Both decay channel signal yields are extracted in bins of proper decay length (in transverse plane)

Bin number	1	2	3	4	5	6	7	8	9	10
Lower edge [mm]	-0.3	0.0	0.3	0.6	0.9	1.2	1.5	1.8	2.1	3.0
Upper edge [mm]	0.0	0.3	0.6	0.9	1.2	1.5	1.8	2.1	3.0	6.0

- Using fits to mass of reconstructed $J/\psi K^{*0}$ and $J/\psi K^{0}_{s}$ candidates
- Per-bin detector acceptances are further accounted for in the measurement

Production asymmetry determination

- Production asymmetry is derived from time-dependent asymmetry between $J/\psi K^{*0} + J/\psi \overline{K}^{*0}$: ٠ $\Gamma[t, \mathbf{B}^{0}(\bar{\mathbf{B}}^{0}) \to J/\psi K^{*0}/\bar{K}^{*0}] = e^{-\Gamma_{d}t} \left[\cosh \frac{\Delta \Gamma_{d}t}{2} + (-)A_{p} \cos \Delta m_{d}t \right]$
 - Neglect CPV in mixing term
- Observed charge asymmetry $A_{i,obs}$ is fitted with $A_{i,exp} = (A_{det} + A_{i,osc})(1-2W)$
- W = 0.12 \pm 0.02 K/ π mis-tag fraction
 - from simulation
- A_{det} detector asymmetry for K⁺/K⁻ reconstruction
- Fit results
 - $A_{det} = (1.33 \pm 0.24 \pm 0.30) \times 10^{-2}$
 - agrees with simulation
 - $A_{\rm P} = (0.25 \pm 0.48 \pm 0.05) \times 10^{-2}$
 - χ^2 /n.d.f. = 6.50/7 ٠
 - Systematics dominated by the W uncertainty and deviation of |q/p| from unity
- The A_p value consistent with LHCb
 - the first measurement at LHC in central region •

Semen Turchikhin

14/18

Extraction of $\Delta \Gamma_d$

• Extract yields of $J/\psi K^{*0}$ and $J/\psi K^{0}_{s}$ in bins of proper decay length

- Consistent between 7 and 8 TeV datasets; combined result: ΔΓ_d/Γ_d = (-0.1 ± 1.0(stat.) ± 0.9(syst.))×10⁻²
 - Statistically dominated measurement; largest systematics comes from the signal yield fits and MC statistics
- Most precise single measurement to date
 - PDG 2016 including this result: $\Delta \Gamma_d / \Gamma_d = (-0.2 \pm 1.0) \times 10^{-2}$

$B^{0}_{(s)} \rightarrow \mu^{+} \mu^{-}$ rare decays

$B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$ results

- No significant signals observed:
 - Observed: $N_s = 11$, $N_d = 0$ $(N_s = 16 \pm 12, N_d = -11 \pm 9$ if not positively constrained)
 - Expected: $N_s = 41$, $N_d = 5$
- Measured BR:
 - $BR(B^{0}_{s} \rightarrow \mu^{+}\mu^{-}) = (0.9^{+1.1}_{-0.8}) \times 10^{-9}$
- 95% C.L. limits are set:
 - $BR(B^{0} \rightarrow \mu^{+}\mu^{-}) < 3.0 \times 10^{-9}$ •
 - $BR(B^{0} \rightarrow \mu^{+}\mu^{-}) < 4.2 \times 10^{-10}$
- Compatibility of the simultaneous fit with the SM:
 - $p = 4.8\% (2.0\sigma)$
- ATLAS result is compatible with CMS and LHCb Run-1 measurements and the Run-2 LHCb measurement (PRL 118 (2017) 191801, arXiv:1703.05747)
- ATLAS analysis on Run-2 data is on-going

Beauty 2018, 6-11 May 2018

Semen Turchikhin

Summary

- Three NP-sensitive B-physics analyses were presented:
- Angular analysis of $B^0 \rightarrow \mu^+ \mu^- K^{*0}$ decay
 - Uses Run-1 √s = 8 TeV data, 20.3 fb⁻¹
 - Results are compatible with theoretical predictions and other experiments
- Measurement the $B^{0}-\overline{B}^{0}$ width difference
 - Full Run-1 data statistics, 25.2 fb⁻¹
 - First measurement of the central production asymmetry, consistent with LHCb (and with 0)
 - Most precise single measurement of $\Delta \Gamma_d / \Gamma_d$
 - Still far from the SM precision
- Both measurements statistically limited \rightarrow repeating them on Run-2 data
- $B^{0}_{(s)} \rightarrow \mu^{+}\mu^{-}$ rare decays study was done only on full Run-1 so far
 - Expected precision comparable to that of CMS or LHCb, but suffer from "under-fluctuation" of signal yield
 - Run-2 (2015+2016) analysis results to come soon
- Keep in touch for new results!

Backup slides

Results – comparison to other experiments

All measurements are within 30 range covered by the predictions Beauty 2018, 6-11 May 2018

Semen Turchikhin

fit-based prediction using LHCb data CFFMPSV: Ciuchini et al. JHEP 06 (2016) 116, arXiv:1512.07157

IINR

20/18

$B^{0}_{(s)} \rightarrow \mu^{+} \mu^{-}$ rare decays

Analysis strategy

- FCNC process, CKM and helicity suppressed
- SM predictions:
 - $Br(B^{0} \rightarrow \mu^{+}\mu^{-}) = (3.65 \pm 0.23) \times 10^{-9}$
 - $Br(B^{0} \rightarrow \mu^{+}\mu^{-}) = (1.06 \pm 0.09) \times 10^{-10}$
- Experimentally very clear signature sensitive to NP
- ATLAS analysis uses full Run-1 data of 25 fb⁻¹ at \sqrt{s} = 7 and 8 TeV
- Signal decay Br measured w.r.t. reference mode $B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$

$$\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-) = \frac{N_{d(s)}}{\varepsilon_{\mu^+ \mu^-}} \times \left[\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \right] \frac{\varepsilon_{J/\psi K^+}}{N_{J/\psi K^+}} \times \frac{f_u}{f_{d(s)}}$$

- Many uncertainties reduced
- Complicated multi-variate event selection
 - "Continuum-BDT" to suppress combinatorial muon pairs
 - "Fake-BDT" for mis-identified muons suppression (e.g. from $B^0 \rightarrow \pi K$ decays)

22/18

W

IINR

Signal fits

- ML fit in 3 bins of *continuum-BDT* with with equal 18% • signal efficiency
- If yields positively constrained
 - $N_{s} = 11, N_{d} = 0$
- No constraints:
 - $N_s = 16 \pm 12$, $N_d = -11 \pm 9$
- SM expectation:
 - $N_{s} = 41, N_{d} = 5$ ۲

Beauty 2018, 6-11 May 2018

Semen Turchikhin

Results

- Measured BR:
 - BR(B⁰_s \rightarrow µ⁺µ⁻) = (0.9^{+1.1}_{-0.8})×10⁻⁹
- 95% C.L. limits are set:
 - BR(B⁰_s $\rightarrow \mu^{+}\mu^{-}) < 3.0 \times 10^{-9}$
 - BR(B⁰ $\rightarrow \mu^{+}\mu^{-}$) < 4.2 × 10⁻¹⁰
- Compatibility of the simultaneous fit with the SM:
 - p = 4.8% (2.0σ)

- ATLAS result is compatible with CMS and LHCb Run-1 measurements
- Tension in B^o is reduced with the Run-2 LHCb measurement (PRL 118 (2017) 191801, arXiv:1703.05747)
 - LHCb Run-2: BR(B⁰→µ⁺µ⁻) < 3.4×10⁻¹⁰ @ 95% C.L.
- ATLAS analysis on Run-2 data is on-going

IINR