

Charmless two-body *B* decays at LHCb

Thomas Latham

(on behalf of the LHCb Collaboration)

7th May 2018

Overview

- Introduction
- Recent results from LHCb
 - Measurements of time-dependent and timeintegrated CP asymmetries in $B^0_{(s)} \rightarrow h^+h^-$ decays
 - LHCb-PAPER-2018-006 (in preparation)
 - First observation of the decay $B^0 \rightarrow p\bar{p}$
 - Phys. Rev. Lett. 119 (2017) 232001
- Concluding remarks

CKM mechanism and CP violation

- CKM mechanism agrees well with experiment
- But still plenty of room for new physics
- Vital to measure CP
 violating observables in as many different decay
 processes as possible
- Look for disagreements

CKM mechanism and CP violation

- CKM mechanism agrees well with experiment
- But still plenty of room for new physics
- Vital to measure CP violating observables in as many different decay processes as possible
- Look for disagreements

Manifestations of CPV

- **CPV in decay** $|\bar{A}_{\bar{f}}/A_f| \neq 1$
 - The ratio of the amplitudes for the decay of b and b hadrons to CP-conjugate final states is not of unit magnitude
 - Only form of CPV possible for B⁺ mesons and b-baryons
- **Mixing-induced CPV** $\arg(\lambda_f) + \arg(\lambda_{\bar{f}}) \neq 0$
 - The ratio of the amplitudes for decays with and without mixing is not real
 - Investigated for both B^0 and B^0_s decays
 - Requires time-dependent analyses (more on this later)

• CPV in mixing $|q/p| \neq 1$

- Expected to be small for the *B* meson system
- Will not discuss this further today (although LHCb has made important measurements in last couple of years)

[Phys. Rev. Lett. 114 (2015) 041601] [Phys. Rev. Lett. 117 (2016) 061803]

 $B_{(s)}^{0} \sim B_{(s)}^{0}$ mixing

- Neutral *B* mesons exhibit mixing through box diagram
- Decays to *CP* eigenstates allow to probe the mixing phase through the interference between decays with and without mixing
- Make comparison of direct and indirect determinations, as well as direct determinations in different decays, to probe possible new physics contributions

Time-dependent asymmetries

• The time-dependent CP asymmetry is given by:

$$A_{CP}(t) = \frac{\Gamma[\bar{B}_{d,s}^{0}(t) \to f] - \Gamma[B_{d,s}^{0}(t) \to f]}{\Gamma[\bar{B}_{d,s}^{0}(t) \to f] + \Gamma[B_{d,s}^{0}(t) \to f]} = \frac{-C_{f}\cos(\Delta m_{d,s} t) + S_{f}\sin(\Delta m_{d,s} t)}{\cosh(\frac{\Delta\Gamma_{d,s}}{2} t) + A_{f}^{\Delta\Gamma_{d,s}}\sinh(\frac{\Delta\Gamma_{d,s}}{2} t)}$$

$$C_{f} = \frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}} \qquad S_{f} = \frac{2\mathrm{Im}\lambda_{f}}{1 + |\lambda_{f}|^{2}} \qquad A_{f}^{\Delta\Gamma_{d,s}} = \frac{2\mathrm{Re}\lambda_{f}}{1 + |\lambda_{f}|^{2}}$$

$$|C_{f}|^{2} + |S_{f}|^{2} + |A_{f}^{\Delta\Gamma}|^{2} = 1$$

 $\lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f}$

- $\frac{\overline{A}_f}{A_f}$ is the ratio of decay amplitudes
- $\frac{q}{p}$ is related to the neutral *B* mixing

Time dependent analysis

- Vertex measurements by LHCb VELO allow decay times of particles to be precisely determined
- Need also to tag the flavour of the signal at production
- Putting these two pieces of information together, can measure decay rates as a function of the decay time
- Hence allows mixing-induced CPV to be probed

Time dependent analysis

- Need also to account for effects of:
 - Decay time acceptance (due to trigger and selection requirements)
 - Experimental resolution on the measurement of the decay time
 - Rate of mis-tagging the flavour

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018

2011 + 2012 data set (3 fb⁻¹) used in analyses discussed today

Measurements of CP asymmetries in $B^0_{(s)} ightarrow h^+ h'^-$ decays

LHCb-PAPER-2018-006

in preparation

Previous experimental status

- Measurements of C_{ππ} and S_{ππ} in good agreement between
 B-factories and LHCb
- C_{KK} and S_{KK} are measured only by LHCb
 - No measurement yet of $A_{KK}^{\Delta\Gamma}$
- A_{CP} values in $B \rightarrow K\pi$ modes in good agreement between experiments – LHCb already leading the precision

Event selection

- Particle identification
 - Separate the various final states
 - − Reduce amount of cross contamination from other $B \rightarrow h^+h^-$ modes to ~10% of the signal
- A multivariate Boosted Decision Tree classifier is used to remove combinatorial background
 - Use kinematical and topological variables
 - Signal training sample from simulation
 - Background training sample from data sidebands

LHCb-PAPER-2018-006

Experimental decay rates

$$f(t,\xi,\eta,\,\delta_t) = K^{-1} \left\{ \begin{bmatrix} (1-A_{\rm P})\Omega_{\rm sig}(\xi,\eta) + (1+A_{\rm P}(\bar{\Omega}_{\rm sig})\xi,\eta) \end{bmatrix} I_+(t,\,\delta_t) + \\ \begin{bmatrix} (1-A_{\rm P})\Omega_{\rm sig}(\xi,\eta) - (1+A_{\rm P})\bar{\Omega}_{\rm sig}(\xi,\eta) \end{bmatrix} I_-(t,\,\delta_t) \right\},$$

- t = decay time $\xi = B$ flavour η = predicted mistag probability δ_t = decay time error
 - CP violation coefficients determined from unbinned maximum likelihood fits
 - Fit variables:
 - *B*-candidate invariant mass
 - Decay time and associated per-event error
 - Per-event mistag probability
 - Simultaneous fit to $\pi^+\pi^-$, K^+K^- and $K^+\pi^-$ spectra

$$I_{+}(t, \delta_{t}) = \begin{cases} e^{-\Gamma t'} \left[\cosh\left(\frac{\Delta\Gamma}{2}t'\right) + A_{f}^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma}{2}t'\right) \right] \end{cases} \otimes \\ R\left(t - t'|\delta_{t}\right) \cdot g\left(\delta_{t}\right) \cdot \varepsilon_{acc}\left(t\right), \\ I_{-}\left(t, \delta_{t}\right) = \begin{cases} e^{-\Gamma t} \left[C_{f} \cos\left(\Delta mt'\right) + S_{f} \sin\left(\Delta mt'\right) \right] \end{cases} \otimes \\ R\left(t - t'|\delta_{t}\right) \cdot g\left(\delta_{t}\right) \cdot \varepsilon_{acc}\left(t\right). \end{cases}$$

- Crucial experimental ingredients
 - Determination of any production asymmetry
 - Detection asymmetries also important for flavour-specific modes
 - Determination of the flavour of signal
 B at production (flavour tagging)
 - Determination of the decay time resolution and acceptance

LHCb-PAPER-2018-006

Production asymmetry

$$f(t,\xi,\eta,\,\delta_t) = K^{-1} \left\{ \begin{bmatrix} (1 - A_{\rm P}) \Omega_{\rm sig}(\xi,\eta) + (1 + A_{\rm P}) \,\bar{\Omega}_{\rm sig}(\xi,\eta) \end{bmatrix} I_+(t,\,\delta_t) + \\ \begin{bmatrix} (1 - A_{\rm P}) \,\Omega_{\rm sig}(\xi,\eta) - (1 + A_{\rm P}) \,\bar{\Omega}_{\rm sig}(\xi,\eta) \end{bmatrix} I_-(t,\,\delta_t) \right\},$$

$$I_{+}(t, \delta_{t}) = \left\{ e^{-\Gamma t'} \left[\cosh\left(\frac{\Delta\Gamma}{2}t'\right) + A_{f}^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma}{2}t'\right) \right] \right\} \otimes \\ R\left(t - t'|\delta_{t}\right) \cdot g\left(\delta_{t}\right) \cdot \varepsilon_{\mathrm{acc}}\left(t\right), \\ I_{-}\left(t, \delta_{t}\right) = \left\{ e^{-\Gamma t'} \left[C_{f} \cos\left(\Delta mt'\right) - S_{f} \sin\left(\Delta mt'\right) \right] \right\} \otimes \\ R\left(t - t'|\delta_{t}\right) \cdot g\left(\delta_{t}\right) \cdot \varepsilon_{\mathrm{acc}}\left(t\right). \right\}$$

• A_P: production asymmetry

 determined from timedependent asymmetries of $B^0 \rightarrow K^+\pi^-$ and $B^0_s \rightarrow K^-\pi^+$ decays:

 $A_P(B^0) = (0.19 \pm 0.60)\%$ $A_P(B_s^0) = (2.4 \pm 2.1)\%$

Flavour tagging

- Analysis uses both **Opposite Side** (OS) and Same Side (SS) taggers:
 - information is used on a per-event basis:

Candidates / (5 MeV/c²

8000

6000

4000

2000

 $\boldsymbol{\omega} = \boldsymbol{p}_0 + \boldsymbol{p}_1(\boldsymbol{\eta} - \widehat{\boldsymbol{\eta}})$

Calibration

07/05/2018

Use time-dependent asymmetry of control modes in data for calibration

 $B^0 \rightarrow K^+\pi^-$ shown for OS taggers

SS Pion

Decay time resolution

- Decay time resolution introduces a dilution of oscillation amplitudes $D = \exp(-\frac{1}{2}\Delta m^2 \sigma_t^2)$
- Dilution from σ_t is negligible for B^0 due to small Δm_d
- Resolution determined on per-event basis: decay time error δ_t computed in reconstruction
- Calibration of this quantity is performed on data, measuring simultaneously the time-dependent asymmetries of $B^0 \to D^- \pi^+$ and $B_s^0 \to D_s^- \pi^+$ decays $\sigma_t = q_0 + q_1(\delta t 30 \text{ fs})$

Decay time acceptance

$$f(t,\xi,\eta,\,\delta_t) = K^{-1} \left\{ \left[(1-A_{\rm P})\,\Omega_{\rm sig}\,(\xi,\eta) + (1+A_{\rm P})\,\bar{\Omega}_{\rm sig}\,(\xi,\eta) \right] I_+(t,\,\delta_t) + \left[(1-A_{\rm P})\,\Omega_{\rm sig}\,(\xi,\eta) - (1+A_{\rm P})\,\bar{\Omega}_{\rm sig}\,(\xi,\eta) \right] I_-(t,\,\delta_t) \right\},\,$$

- $\varepsilon_{acc}(t)$ is the decay time acceptance
- Introduced by selection requirements
- Parameterised using empirical function:

$$\varepsilon_{acc}(t) \propto \left[d_0 - \operatorname{erf}\left(d_1 t^{d_2}\right)\right] (1 - d_3 t)$$

- Parameters determined from $B^0 \rightarrow K^+\pi^-$ data and corrected for other final states based on simulation

$$I_{+}(t, \delta_{t}) = \left\{ e^{-\Gamma t'} \left[\cosh\left(\frac{\Delta\Gamma}{2}t'\right) + A_{f}^{\Delta\Gamma} \sinh\left(\frac{\Delta\Gamma}{2}t'\right) \right] \right\} \otimes \\ R(t - t'|\delta_{t}) \cdot g(\delta_{t}) \cdot \varepsilon_{acc}(t) , \\ I_{-}(t, \delta_{t}) = \left\{ e^{-\Gamma t'} \left[C_{f} \cos\left(\Delta mt'\right) - S_{f} \sin\left(\Delta mt'\right) \right] \right\} \otimes \\ R(t - t'|\delta_{t}) \cdot g(\delta_{t}) \left[\varepsilon_{acc}(t) \right]$$

CP violation in (Q)2B charmless B decays

LHCb-PAPER-2018-006

Result of the simultaneous fit

K^+K^- spectrum

CP violation in (Q)2B charmless B decays

LHCb-PAPER-2018-006

Result of the simultaneous fit

CP violation in (Q)2B charmless B decays

CPV results

LHCb Preliminary

$C_{\pi^+\pi^-}$	=	-0.34	± 0.06	± 0.01 ,
$S_{\pi^+\pi^-}$	=	-0.63	± 0.05	± 0.01 ,
$C_{K^+K^-}$	=	0.20	± 0.06	\pm 0.02,
$S_{K^+K^-}$	=	0.18	± 0.06	\pm 0.02,
$A_{K^+K^-}^{\Delta\Gamma}$	=	-0.79	± 0.07	$\pm 0.10,$
$A_{CP}^{B^0}$	=	-0.084	± 0.004	\pm 0.003,
$A_{C\!P}^{B_s^0}$	=	0.213	± 0.015	\pm 0.007,

- Significant improvement ($\sim 2 \times$ better precision) wrt previous results
- Most precise measurements from a single experiment
- First determination of $A_{KK}^{\Delta\Gamma}$
- Significance for $(C_{K^+K^-}, S_{K^+K^-}, A_{K^+K^-}^{\Delta\Gamma})$ to differ from (0,0,-1) is determined to be 4σ
 - Strongest evidence of time-dependent CPV in B_s^0 system to date

Comparison with other experiments

Courtesy of the Heavy Flavour Averaging Group

First observation of $B^0 \rightarrow p\bar{p}$

Phys. Rev. Lett. 119 (2017) 232001

Search for $B^0 \to p\bar{p}$

- Decay not seen at B factories, first evidence came from LHCb analysis of 2011 data [JHEP 10 (2013) 005]
- Central value determined there (~ 10⁻⁸) was much smaller than most theoretical calculations at the time
- More recent theoretical work has been able to accommodate the small BF of this mode, see e.g. [Phys. Rev. D 91 (2015) 077501, Phys. Rev. D 91 (2015) 036003]
- Important to improve knowledge of such rare hadronic decays

Phys. Rev. Lett. 119 (2017) 232001

First observation of $B^0 \rightarrow p\bar{p}$

- Significance of $B^0 \rightarrow p\bar{p}$ determined to be 5.3 σ including effect of systematic uncertainties
- Constitutes first observation of the decay!

- Clear B^0 signal peak, with yield of 39 ± 8
- No significant signal from corresponding B_s^0 decay: 2 ± 4

Phys. Rev. Lett. 119 (2017) 232001

Branching fraction of $B^0 \rightarrow p\bar{p}$

- Branching fractions determined relative to $B^0 \rightarrow K^+\pi^-$ decay
 - Very clean sample of ~89k signal candidates

• Rarest hadronic *B* decay ever observed!

 $\mathcal{B}(B^0 \to p\bar{p}) = (1.25 \pm 0.27 \pm 0.18) \times 10^{-8}$

$$\mathcal{B}(B_s^0 \rightarrow p\bar{p}) < 1.5 \times 10^{-8}$$
 at 90% CL

CP violation in (Q)2B charmless B decays

Concluding remarks

- Highly sophisticated analyses of CP violation in charmless *B* decays
 - See also analyses of $B_s^0 \to \phi \phi$ and $B_s^0 \to K^{*0} \overline{K}^{*0}$ presented by G. Cowan
- Most precise measurements of CP violation parameters in the decays:
 - $\ B^0 \to \pi^+\pi^-$
 - $\ B^0 \to K^+\pi^-$
 - $B_s^0 \rightarrow K^- \pi^+$
 - $B_s^0 \to K^+ K^-$
- Recently, several first observations of baryonic decays of *B* mesons have been made, including:
 - The rarest hadronic *B* meson decay yet observed: $B^0 \rightarrow p\bar{p}$
- Updates to include full Run 1 + Run 2 samples will further improve the precision expect $\sim 3 \times$ Run 1 integrated luminosity
- Looking further forward, the LHCb upgrade(s) will provide unprecedented samples of these decays
- Excellent prospects for making precision tests of the Standard Model explanation of CP violation

Backup Slides

Time-dependent decay rates

- For an initially pure flavour eigenstate, time evolution proceeds according to: $\frac{d\Gamma[B_{d,s}^{0}(t) \to f]}{dt} \propto e^{-\Gamma t} \left[\left(|A_{f}|^{2} + |\bar{A}_{f}|^{2} \right) \cosh\left(\frac{\Delta\Gamma_{d,s}}{2}t\right) + \left(|A_{f}|^{2} - |\bar{A}_{f}|^{2} \right) \cos\left(\Delta m_{d,s}t\right) \\
 + 2\operatorname{Re}\left(\frac{q}{p}A_{f}^{*}\bar{A}_{f}\right) \sinh\left(\frac{\Delta\Gamma_{d,s}}{2}t\right) - 2\operatorname{Im}\left(\frac{q}{p}A_{f}^{*}\bar{A}_{f}\right) \sin\left(\Delta m_{d,s}t\right) \right] \\
 \frac{d\Gamma[\bar{B}_{d,s}^{0}(t) \to f]}{dt} \propto e^{-\Gamma t} \left[\left(|A_{f}|^{2} + |\bar{A}_{f}|^{2} \right) \cosh\left(\frac{\Delta\Gamma_{d,s}}{2}t\right) - \left(|A_{f}|^{2} - |\bar{A}_{f}|^{2} \right) \cos\left(\Delta m_{d,s}t\right) \\
 + 2\operatorname{Re}\left(\frac{q}{p}A_{f}^{*}\bar{A}_{f}\right) \sinh\left(\frac{\Delta\Gamma_{d,s}}{2}t\right) + 2\operatorname{Im}\left(\frac{q}{p}A_{f}^{*}\bar{A}_{f}\right) \sin\left(\Delta m_{d,s}t\right) \right]$
- The time-dependent CP asymmetry is therefore:

 $1 + |\Lambda_f|$

$$A_{CP}(t) = \frac{\Gamma[\bar{B}^0_{d,s}(t) \to f] - \Gamma[B^0_{d,s}(t) \to f]}{\Gamma[\bar{B}^0_{d,s}(t) \to f] + \Gamma[B^0_{d,s}(t) \to f]} = \frac{-C_f \cos(\Delta m_{d,s} t) + S_f \sin(\Delta m_{d,s} t)}{\cosh(\frac{\Delta \Gamma_{d,s}}{2} t) + A_f^{\Delta \Gamma d,s} \sinh(\frac{\Delta \Gamma_{d,s}}{2} t)}$$

$$\frac{1-|\lambda_f|^2}{1+|\lambda_f|^2} \quad S_f = \frac{2\operatorname{Im}\lambda_f}{1+|\lambda_f|^2} \quad |C_f|^2+|S_f|^2+|A_f^{\Delta\Gamma}|^2 = 1$$

$$\lambda_f = \frac{q}{p}\frac{\bar{A}_f}{\bar{A}_f} \quad |C_f|^2+|S_f|^2+|A_f^{\Delta\Gamma}|^2 = 1$$

$$\lambda_f = \frac{q}{p}\frac{\bar{A}_f}{\bar{A}_f} \quad |C_f|^2+|S_f|^2+|A_f^{\Delta\Gamma}|^2 = 1$$

$$\frac{q}{p} \text{ is related to the neutral } B \text{ mixing}$$

$$\frac{\bar{A}_f^{\Delta\Gamma}_{d,s}}{\bar{A}_f} = \frac{2\operatorname{Re}\lambda_f}{1+|\lambda_f|^2}$$

07/05/2018

CP violation in (Q)2B charmless B decays

Previous experimental status

	Experiment	$C_{\pi^+\pi^-}$	$S_{\pi^+\pi^-}$	$ ho(C_{\pi^+\pi^-},S_{\pi^+\pi^-})$
PRD 87 (2013) 052009	BaBar	$-0.25 \pm 0.08 \pm 0.02$	$-0.68 \pm 0.10 \pm 0.03$	-0.06
PRD 88 (2013) 092003	Belle	$-0.33 \pm 0.06 \pm 0.03$	$-0.64 \pm 0.08 \pm 0.03$	-0.10
JHEP 10 (2013) 183	LHCb	$-0.38 \pm 0.15 \pm 0.02$	$-0.71 \pm 0.13 \pm 0.02$	0.38
	HFLAV Avg.	-0.31 ± 0.05	-0.66 ± 0.06	0.00
EPJC 77 (2017) 895		$C_{K^+K^-}$	$S_{K^+K^-}$	$ \rho(C_{K^+K^-}, S_{K^+K^-}) $
JHEP 10 (2013) 183	LHCb	$0.14 \pm 0.11 \pm 0.03$	$0.30 \pm 0.12 \pm 0.04$	0.02

F	PRD 87 (2013) 052009	Experiment	$A^{B^0}_{CP}$	$A_{CP}^{B_s^0}$
		BaBar	$-0.107 \pm 0.016 \ ^+ \ ^0.006 \ ^- \ ^0.004$	
F	PRD 87 (2013) 031103	Belle	$-0.069 \pm 0.014 \pm 0.007$	
Р	RL 113 (2014) 242001	CDF	$-0.083 \pm 0.013 \pm 0.004$	$0.22 \pm 0.07 \pm 0.02$
Р	RL 110 (2013) 221601	LHCb	$-0.080\pm 0.007\pm 0.003$	$0.27 \pm 0.04 \pm 0.01$
		HFLAV Avg.	-0.082 ± 0.006	0.26 ± 0.04
	EPJC 77 (2017) 895	_		

Previous experimental status

- Measurements of $C_{\pi\pi}$ and $S_{\pi\pi}$ in good agreement between Bfactories and LHCb
- C_{KK} and S_{KK} are measured only by LHCb (using 1 fb⁻¹ @ 7 TeV)
 - No measurement yet of $A_{KK}^{\Delta\Gamma}$

Experimental decay rates – flavour specific decays

$$\begin{split} f_{\rm FS}\left(t,\,\delta_t,\,\psi,\,\vec{\xi},\,\vec{\eta}\right) = & K_{\rm FS}\left(1-\psi A_{CP}\right)\left(1-\psi A_{\rm F}\right)\times \\ & \left\{\left[(1-A_{\rm P})\Omega_{\rm sig}(\vec{\xi},\vec{\eta}) + (1+A_{\rm P})\overline{\Omega_{\rm sig}}(\vec{\xi},\vec{\eta})\right]H_+\left(t,\,\delta_t\right) + \right. \\ & \psi\left[(1-A_{\rm P})\Omega_{\rm sig}(\vec{\xi},\vec{\eta}) - (1+A_{\rm P})\overline{\Omega_{\rm sig}}(\vec{\xi},\vec{\eta})\right]H_-\left(t,\,\delta_t\right)\right\}, \end{split}$$

$$H_{+}(t, \delta_{t}) = \left[e^{-\Gamma_{d,s}t'} \cosh\left(\frac{\Delta\Gamma_{d,s}}{2}t'\right)\right] \otimes R(t-t'|\delta_{t}) g_{\text{sig}}(\delta_{t}) \varepsilon_{\text{sig}}(t),$$

$$H_{-}(t, \delta_{t}) = \left[e^{-\Gamma_{d,s}t'} \cos\left(\Delta m_{d,s}t'\right)\right] \otimes R(t-t'|\delta_{t}) g_{\text{sig}}(\delta_{t}) \varepsilon_{\text{sig}}(t),$$

 ψ = *B* flavour (determined by final state)

- t = decay time
- $\xi = B$ flavour tag
- η = predicted mistag probability
- δ_t = decay time error

07/05/2018

CP violation in (Q)2B charmless B decays

Constraints on CKM parameters

- Recent LHCb paper uses methodology from [JHEP 10 (2012) 029]
- Combine information from $B^0 \to \pi^+\pi^-$, $B^0_s \to K^+K^-$, $B^+ \to \pi^+\pi^0$, and $B^0 \to \pi^0\pi^0$ decays
- Use flavour symmetries (isospin and U-spin) to constrain uncertainties from hadronic parameters (strong phases, etc.)
- Very little effect of U-spin breaking on extraction of $-2\beta_s$ but further improvements in extraction of γ using this method are potentially limited by understanding of U-spin breaking
- New strategies are being developed to reduce the dependence on U-spin symmetry

Constraints on CKM parameters

LHCb-PAPER-2018-006

Result of the simultaneous fit

CP violation in (Q)2B charmless B decays

LHCb-PAPER-2018-006

Result of the simultaneous fit

CP violation in (Q)2B charmless B decays

Statistical correlations

	$C_{\pi^+\pi^-}$	$S_{\pi^+\pi^-}$	$C_{K^+K^-}$	$S_{K^+K^-}$	$A_{K^+K^-}^{\Delta\Gamma}$	$A_{CP}^{B^0}$	$A_{CP}^{B_s^0}$
$C_{\pi^+\pi^-}$	1.000	0.448	-0.006	-0.009	0.000	-0.009	0.003
$S_{\pi^+\pi^-}$	0.448	1.000	-0.040	-0.006	0.000	0.008	0.000
$C_{K^+K^-}$	-0.006	-0.040	1.000	-0.014	0.025	0.006	0.001
$S_{K^+K^-}$	-0.009	-0.006	-0.014	1.000	0.028	-0.003	0.000
$A_{K^+K^-}^{\Delta\Gamma}$	0.000	0.000	0.025	0.028	1.000	0.001	0.000
$A_{CP}^{B^0}$	-0.009	0.008	0.006	-0.003	0.001	1.000	0.043
$A_{CP}^{B_s^0}$	0.003	0.000	0.001	0.000	0.000	0.043	1.000

Systematic uncertainties

Source of uncertainty	$C_{\pi^+\pi^-}$	$S_{\pi^+\pi^-}$	$C_{K^+K^-}$	$S_{K^+K^-}$	$A_{K^+K^-}^{\Delta\Gamma}$	$A_{CP}^{B^0}$	$A_{C\!P}^{B_s^0}$
Time-dependent efficiency	0.0011	0.0004	0.0020	0.0017	0.0778	0.0004	0.0002
Time-resolution calibration	0.0014	0.0013	0.0108	0.0119	0.0051	0.0001	0.0001
Time-resolution model	0.0001	0.0005	0.0002	0.0002	0.0003	negligible	negligible
Input parameters	0.0025	0.0024	0.0092	0.0107	0.0480	negligible	0.0001
OS-tagging calibration	0.0018	0.0021	0.0018	0.0019	0.0001	negligible	negligible
SSK-tagging calibration	n/a	n/a	0.0061	0.0086	0.0004	n/a	n/a
SSc-tagging calibration	0.0015	0.0017	n/a	n/a	n/a	negligible	negligible
Cross-feed time model	0.0075	0.0059	0.0022	0.0024	0.0003	0.0001	0.0001
Three-body bkg.	0.0070	0.0056	0.0044	0.0043	0.0304	0.0008	0.0043
Combbkg. time model	0.0016	0.0016	0.0004	0.0002	0.0019	0.0001	0.0005
Signal mass model (reso.)	0.0027	0.0025	0.0015	0.0015	0.0023	0.0001	0.0041
Signal mass model (tails)	0.0007	0.0008	0.0013	0.0013	0.0016	negligible	0.0003
Combbkg. mass model	0.0001	0.0003	0.0002	0.0002	0.0016	negligible	0.0001
PID asymmetry	n/a	n/a	n/a	n/a	n/a	0.0025	0.0025
Detection asymmetry	n/a	n/a	n/a	n/a	n/a	0.0014	0.0014
Total	0.0115	0.0095	0.0165	0.0191	0.0966	0.0030	0.0066

Kaon/pion separation

- Most particle identification information comes from the Ring Imaging Cherenkov detectors.
- Different radiators provide separation over a wide momentum range.

$$\cos\theta = \frac{1}{\beta n}$$

Trigger categories

Trigger On Signal

- Particle from the signal decay fires a trigger line.
- Triggered by HCAL deposits.

Trigger Independent of Signal

- Particle from the rest of the event fires a trigger line.
- Triggered mostly by HCAL deposits or muons.
 - Trigger Efficiencies:
 - ~30% efficient for multibody hadronic
 - □ ~90% efficient for di-muons

Table 16: Statistical sensitivities of the LHCb upgrade to key observables. For each observable the current sensitivity is compared to that which will be achieved by LHCb before the upgrade, and that which will be achieved with $50 \, \text{fb}^{-1}$ by the upgraded experiment. Systematic uncertainties are expected to be non-negligible for the most precisely measured quantities. Note that the current sensitivities do not include new results presented at ICHEP 2012 or CKM2012.

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	(50fb^{-1})	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [138]	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	0.17 [214]	0.045	0.014	~ 0.01
	$a_{ m sl}^s$	6.4×10^{-3} [43]	$0.6 imes10^{-3}$	$0.2 imes 10^{-3}$	$0.03 imes 10^{-3}$
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	_	0.17	0.03	0.02
penguins	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	-	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K_S^0)$	0.17 [43]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	_	0.09	0.02	< 0.01
currents	$\tau^{\rm eff}(B^0_s \to \phi \gamma) / \tau_{B^0_s}$	_	5%	1 %	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08[67]	0.025	0.008	0.02
penguins	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25% [67]	6%	2%	7%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV^2/c^4})$	0.25 [76]	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% [85]	8%	2.5%	$\sim 10 \%$
Higgs	${\cal B}(B^0_s o \mu^+\mu^-)$	1.5×10^{-9} [13]	0.5×10^{-9}	0.15×10^{-9}	$0.3 imes 10^{-9}$
penguins	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	-	$\sim 100 \%$	$\sim 35\%$	$\sim 5\%$
Unitarity	$\gamma \ (B \to D^{(*)}K^{(*)})$	$\sim 10 - 12^{\circ} [244, 258]$	4°	0.9°	negligible
triangle	$\gamma \ (B^0_s \to D_s K)$	_	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K_{\rm s}^0)$	0.8° [43]	0.6°	0.2°	negligible
Charm	A_{Γ}	2.3×10^{-3} [43]	$0.40 imes 10^{-3}$	$0.07 imes 10^{-3}$	_
CP violation	ΔA_{CP}	2.1×10^{-3} [18]	$0.65 imes 10^{-3}$	$0.12 imes 10^{-3}$	-