

Measurements of β and β_s

Beauty - Isola d'Elba - 7th May 2018

GreigCowan (Edinburgh), on behalf of the LHCb collaboration

Science & Technology Facilities Council

CPV in $B_{(s)}^{\theta}$ mixing and decay

$$\arg(\lambda_{f_{CP}}) \neq 0$$
Measurable phases

$$\phi_d = 2\beta$$

$$\phi_s = -2\beta_s$$

$$2\beta_s^{SM} = 2\beta_s$$

e predictions

$$(47.48^{+2.26}_{-1.96})^{\circ}$$

 $(2.122 \pm 0.037)^{\circ}$

CPV in $B_{(s)}^{\theta}$ mixing and decay

$$\begin{array}{l} \arg(\lambda_{f_{CP}}) \neq 0 \\ \textbf{Measurable phases} \\ \phi_d = 2\beta + \Delta \phi^{pen} + \Delta \phi^{NP} \\ \phi_s = -2\beta_s + \Delta \phi_s^{pen} + \Delta \phi_s^{NP} \end{array} \begin{array}{l} \textbf{Precis} \\ 2\beta^{\text{SM}} = 2\beta^{\text{SM}} = 2\beta^{\text{SM}} \\ 2\beta^{\text{SM}} = 2\beta^{\text{SM}} = 2\beta^{\text{SM}} \end{array}$$

e predictions

 $=(47.48^{+2.26}_{-1.96})^{\circ}$ $= (2.122 \pm 0.037)^{\circ}$ [CKMFitter]

Measuring ϕ_q

Study time-dependent CP asymmetry

$$\frac{\Gamma_{\overline{B}_{(s)}^{0} \to f}(t) - \Gamma_{B_{(s)}^{0} \to f}(t)}{\Gamma_{\overline{B}_{(s)}^{0} \to f}(t) + \Gamma_{B_{(s)}^{0} \to f}(t)} = \frac{S_{f} \sin(\Delta m_{(s)}t) - C_{f} \cos(\Delta m_{(s)}t)}{\cosh(\frac{\Delta \Gamma_{(s)}t}{2}) + A_{f}^{\Delta \Gamma_{(s)}} \sinh(\frac{\Delta \Gamma_{(s)}t}{2})}$$
$$A_{f}^{\Delta \Gamma} \equiv -\frac{2 \Re(\lambda_{f})}{1 + |\lambda_{f}|^{2}}, \quad C_{f} \equiv \frac{1 - |\lambda_{f}|^{2}}{1 + |\lambda_{f}|^{2}}, \quad S_{f} \equiv \frac{2 \Im(\lambda_{f})}{1 + |\lambda_{f}|^{2}},$$

Mixing parameters

$$\begin{array}{ll} \Delta m \equiv (m_H - m_L) & \mbox{Mixing frequency} \\ \Gamma \equiv (\Gamma_L + \Gamma_H)/2 & \mbox{Average width} \\ \Delta \Gamma \equiv \Gamma_L - \Gamma_H & \mbox{Width difference} \end{array}$$

Experimental requirements:

- Excellent decay-time resolution (~45 fs)
- Modelling decay-time efficiency (due to lifetime/IP cuts)
- Production + detection asymmetries (~1%)
- Tagging of meson flavour @ production

Flavour physics at the LHC

nPVs ~2 nTracks ~ 200 $PT(B) \sim 5 \text{ GeV}$ рт(child) ~ I GeV

 $\sigma_{bb}(7 \text{ TeV}) = 72.0 \pm 0.3 \pm 6.8 \mu b$ $\sigma_{bb}(13 \text{ TeV}) = 154.3 \pm 1.5 \pm 14.3 \mu b$ [PRL 118 (2017) 052002]

[Heinicke, CERN-THESIS-2016-152]

Measuring ϕ_d

Golden mode: $B^0 \rightarrow J/\psi K_S$

With Run I, LHCb has a similar precision to Bello

 $S_f = \sin 2\beta = 0.691 \pm 0.017$ [HFLAV] $\sin 2\beta^{\rm SM} = 0.740^{+0.020}_{-0.025}$ [CKMFitter]

Dominant systematics:

LHCb background tagging asymmetry \rightarrow expect with more data

Belle vertex reconstruction and time resolution

 $\Delta \Gamma_d \neq 0$? $s \times \Delta \Gamma_d / \Gamma_d = (-2 \pm 10.) \times 10^{-3}$ [HFLAV] SM $\Delta \Gamma_d / \Gamma_d = (-3.97 \pm 0.90) \times 10^{-3}$ [Artuso et al]

$$\frac{\Gamma_{\overline{B}_{(s)}^{0} \to f}(t) - \Gamma_{B_{(s)}^{0} \to f}(t)}{\Gamma_{\overline{B}_{(s)}^{0} \to f}(t) + \Gamma_{B_{(s)}^{0} \to f}(t)} = \frac{S_{f} \sin(\Delta m_{(s)}t) - C_{f} \cos(\Delta m_{(s)}t)}{\cosh(\frac{\Delta \Gamma_{(s)}t}{2}) + A_{f}^{\Delta \Gamma_{(s)}} \sinh(\frac{\Delta m_{(s)}t}{2})}$$

$$\frac{Sin(2\beta) \equiv Sin(2\phi_{1}) \underbrace{\text{Billow}}{\text{Summer 2}}$$

$$e/BaBar \qquad \begin{array}{c} BaBar \\ PRD 79 (2009) 072009 \\ BaBar \chi_{0} K_{S} \\ PRD 80 (2009) 112001 \\ BaBar J/\Psi (hadronic) K_{S} \\ PRD 69 (2004) 052001 \\ Belle \\ PRL 108 (2012) 171802 \\ ALEPH \\ PLB 492, 259 (2000) \\ OPAL \\ EPJ C5, 379 (1998) \\ CDF \\ PRD 61, 072005 (2000) \\ CDF \\ CDF \\ PRD 61, 072005 (2000) \\ CDF \\ CDF$$

3

Measuring ϕ_d

Golden mode: $B^0 \rightarrow J/\psi K_S$

With Run I, LHCb has a similar precision to Bell

 $S_f = \sin 2\beta = 0.691 \pm 0.017 \text{ [HFLAV]}$ $\sin 2\beta^{\text{SM}} = 0.740^{+0.020}_{-0.025} \text{ [CKMFitter]}$

Electron and other $[c\bar{c}]$ modes provide additio ~15% on the overall precision \rightarrow improved ele reconstruction in LHCb upgrade-II would help

LHCb @ 300/fb $\rightarrow \sigma(S) \sim 0.003$

[JHEP II (2017) 170]

 $\leftrightarrow c\bar{c} h_{\odot} \simeq 0.760 \pm 0.034$

 $\Rightarrow \boxed{cc} K^0 = -0.017 \pm 0.029$

Measuring ϕ_s

Golden mode: $B^{0}_{s} \rightarrow J/\psi\phi$, but need angular analysis to separate CP-odd/even components as we have two vectors in final state and small $K^{+}K^{-}$ S-wave

Bonus feature: measure ϕ_s , $\Delta \Gamma_s$, Γ_s , Δm_s

New physics is not large \rightarrow stat-limited so need increased precision and to control size of penguin contributions

 $\operatorname{CP} | \mathbf{J} / \psi \phi \rangle_{\ell} \quad = \quad (-1)^{\ell} | \mathbf{J} / \psi \phi \rangle_{\ell}$

$$\frac{\Gamma_{\overline{B}_{(s)}^{0} \to f}(t) - \Gamma_{B_{(s)}^{0} \to f}(t)}{\Gamma_{\overline{B}_{(s)}^{0} \to f}(t) + \Gamma_{B_{(s)}^{0} \to f}(t)} = \frac{S_{f} \sin(\Delta m_{(s)}t) - C_{f} \cos(\Delta m_{(s)}t)}{\cosh(\frac{\Delta \Gamma_{(s)}t}{2}) + A_{f}^{\Delta \Gamma_{(s)}} \sinh(\frac{\Delta m_{(s)}t}{2})}$$

Measuring ϕ_s

Golden mode: $B^{0}_{s} \rightarrow J/\psi\phi$, but need angular analysis to separate CP-odd/even components as we have two vectors in final state and small K^+K^- S-wave

Bonus feature: measure ϕ_s , $\Delta\Gamma_s$, Γ_s , Δm_s

New physics is not large \rightarrow stat-limited so need increased precision and to control size of penguin contributions

[HFLAV]

 $\phi_s = -21 \pm 31 \,\mathrm{mrad}$ $\Delta \Gamma_s = 0.090 \pm 0.005 \, \mathrm{ps}^{-1}$

[CKMFitter] $\phi_s^{\rm SM} = -37.6^{+0.7}_{-0.8} \,\mathrm{mrad}$

LHCb:

- *J*/ψφ [PRL114, 041801 (2015)]
- $J/\psi K^+K^-$ [arXiv:1704.08217 (2017)]
- $J/\psi \pi^+\pi^-$ [Phys. Lett. B736, (2014) 186]
- $\psi(2S)\phi$ [Phys. Lett. B762 (2016) 253-262]
- $D_s^+ D_s^-$ [PRL113, 211801 (2014)]

CMS:

 $J/\psi\phi$ [Phys. Lett. B 757 (2016) 97]

ATLAS:

J/ψφ [JHEP 08 (2016) 147]

Previous studies focussed on low-mass region where $\phi(1020)$ dominates over a small KK S-wave

Use time-dependent amplitude analysis to increase sensitivity to ϕ_s using high m(KK) region

[Stone, Zhang, PLB 719 (2013) 383]

 $|\lambda|$

ϕ_s ultimate precision

Scaling of current precision using current detector and expected running conditions

 $B^{0}_{s} \rightarrow J/\psi KK$ and $B^{0}_{s} \rightarrow J/\psi \pi \pi$ will remain the dominant modes

Currently stat dominated, but must be able to control systematics (efficiencies and resolutions)

Hadronic trigger improvements in upgrade will help $B_s \rightarrow D_s D_s$ and if we can use timing to improve photon reconstruction in LHCb upgrade-II then $B_s{}^0 \rightarrow J/\psi\eta$ becomes interesting (no angular analysis needed for both channels)

[PRL II3 (2014) 211801] [PLB 762C (2016) 484]

Penguin pollution roadmap: ϕ_d

U-spin or SU(3) flavour symmetry (+ dynamically assumptions) to constrain size of penguin with $b \rightarrow c\overline{c}d$ or **compute** them with OPE, QCD- factorisation

 $B_s^0 \rightarrow J/\psi K_s$ and $B^0 \rightarrow J/\psi K_s$ are U-spin partners \rightarrow control penguins in ϕ_d , but limited precision with Run I data

Improved K_s reconstruction in LHCb upgrade will help

$$rac{Faran}{A_{\Delta\Gamma}} C_{
m dir} S_{
m mix}$$

$$\phi_d = 2\beta + \Delta \phi_d^{pen} + \Delta \phi_d^{NP}$$

Penguin pollution roadmap: ϕ_d

$$\Delta \phi_d^{\psi K_{\rm S}^0} = -\left(1.10^{+0.70}_{-0.85}\right)^{\circ}$$

Small penguin shift but experimental precision is $\sigma(\phi_d) \sim$ 1.6° so must continue to improve

270250

Limited precision from $B_s \rightarrow J/\psi K_S$ limited but can place constraints on penguin size from direct/mixing CP asymmetries (A_{CP}) and ratios of BRs (H) of $B \rightarrow J/\psi X$ decays, e.g.,

> Mostly K π detector asymmetry

$$\mathcal{A}_{CP}(B^+ \to J/\psi K^+) = (0.09 \pm 0.27 \pm 0.07) \times 10^{-2}$$
$$\mathcal{A}^{CP}(B^+ \to J/\psi \pi^+) = (1.91 \pm 0.89 \pm 0.16) \times 10^{-2}$$

[LHCb PRD 95 (2017) 052005] [LHCb JHEP 03 (2017) 036]

E + PA amplitudes must be neglected in $B^0 \rightarrow J/\psi \pi^0$ as they have no counterpart in $B^0 \rightarrow J/\psi K_S$. These effects are should be tiny and can be probed through $B^{0}(s) \rightarrow J/\psi\pi^{0}$ and $B^{0} \rightarrow J/\psi\rho^{0}$ in the future

> $S(J/\psi\pi^0) \sigma = 0.027 \text{ (stat)} \pm 0.027 \text{ (syst)}$ $A(I/\psi\pi^0) \sigma = 0.035 \text{ (stat)} \pm 0.017 \text{ (syst)}$ [Belle-II projections @ 50 ab⁻¹ from A. Gaz, P. Urquijo, L Li Gioi]

Penguin pollution roadmap: ϕ_s [JHEP 11 (2015) 082] 2000 F 1800

Relax assumption that $\lambda f \equiv \eta_f (q/p)(\overline{A}_f/A_f)$ is same for all $(J/\psi K^+K^-)_f$ polarisations \rightarrow measure $\lambda f = |\lambda f| exp(-i\phi f_s)$, but this shows no sign of polarisation dependence

 $SU(3)_f: B_s^0 \to J/\psi K^*$ and $B^0 \to J/\psi \rho^0$ are $b \to c\bar{c}d$ transitions (related by s-d spectator exchange). $B^0 \rightarrow J/\psi \rho^0$ contains E + PA diagrams that are not present in $B_s^0 \rightarrow J/\psi K^*$

Measure penguin phase shift for each polarisation state, $f \in (0, \perp, \parallel, S)$

$$\begin{split} \Delta \phi_{s,0}^{J/\psi\phi} &= 0.000^{+0.009}_{-0.011} \text{ (stat) } \stackrel{+0.004}{_{-0.009}} \text{ (syst) rad} \\ \Delta \phi_{s,\parallel}^{J/\psi\phi} &= 0.001^{+0.010}_{-0.014} \text{ (stat) } \pm 0.008 \text{ (syst) rad} \\ \Delta \phi_{s,\perp}^{J/\psi\phi} &= 0.003^{+0.010}_{-0.014} \text{ (stat) } \pm 0.008 \text{ (syst) rad} \end{split}$$

Small penguin shift (~0.06°) to be compared with current experimental precision is $\sigma(\phi_s) \sim 0.03$ rad

[JHEP II (2015) 082]

[PRL 114 (2015) 041801]

$\phi_s q\bar{q}$ from loop-dominated B_s^0 decays

Measure CPV phase from mixing + decay in $B_s^0 \rightarrow (K^+\pi^-)(K^-\pi^+)$ and $B_S^0 \rightarrow \phi \phi \rightarrow (K^+K^-)(K^+K^-)$. Compare to $B_S^0 \rightarrow J/\psi \phi$

$\oint c^{S\overline{S}}$.02 rad

[Bartsch et al., arXiv:0810.0249] [Beneke et al., NPB 774 (2007) 64] [Cheng et al., PRD 80 (2009) 114026]

ϕ_s^{dd} from $B_s^0 \rightarrow (K^+\pi^-)(K^-\pi^+)$

Flavour-tagged ($\varepsilon_{tag} \sim 5\%$), decay-time dependent amplitude analysis of the 4-body final state (6D to analyse)

Rich structure of interfering scalar/vector/tensor $K\pi$ resonances in $B_s^0 \rightarrow (K^+\pi^-)(K^-\pi^+)$, including $K_0^*(1430)^0, K^*(892)^0, K_2^*(1430)^0$

Excellent hadron-PID for bkg suppression

[JHEP 03 (2018) 140]

9 Q2B channels \rightarrow 19 amplitudes

 ϕ_s^{dd} from $B_s^0 \rightarrow (K^+\pi^-)(K^-\pi^+)$

8 Systematic uncertainty dominated by modelling the angular efficiency from simulation + other results for fractions/phases of other Q2B amplitudes

 $\phi_s s\bar{s} from B_s^0 \rightarrow \phi \phi \rightarrow (K^+K^-)(K^+K^-))$ T rad) (0.4850 ps LHCb Preliminary LHCb Preliminary (0.314)250 ₽ Candidates Candidates 10 200 E **CP-even** 150 **CP-odd** 100 E Single and double S-wave 10 -2Decay time [ps] 0.1000.100 LHCb Preliminary LHCb Preliminary Candidates Candidates 300 E 250 250 F 200 200 150 150 100 100 50 50 -0.50.5 -0.50 0 $\cos\theta_1$

TPAs $A_U = 0.000 \pm 0.012 \,(\text{stat}) \pm 0.004 \,(\text{syst})$ $A_V = -0.003 \pm 0.012 \,(\text{stat}) \pm 0.004 \,(\text{syst})$

$b \rightarrow c \bar{u} d(s)$ and $b \rightarrow u \bar{c} d(s)$

Tagged, decay time dependent $B_{(s)}^{0} \rightarrow D_{(s)} \mp h^{\pm}$ are sensitive to $\gamma \pm 2\beta_{(s)}$ without penguin pollution. Taking $\beta_{(s)}$ from $b \rightarrow c \overline{c} s$ transitions we can measure γ . $r(D\pi) \sim 0.02$, $r(D_sK) \sim 0.4$

Data-driven time efficiency, tagging and resolution calibration. Yields increase by ~4 after Run 2 (hadronic trigger eff and $\sigma_{bb} 8 \rightarrow 13 \text{ TeV}$)

$B^0 \rightarrow D^{\mp}\pi^{\pm}$	$S_f[\%]$	$S_{ar{f}}$ [%]
Belle [11]	$6.8\pm2.9\pm1.2$	$3.1\pm3.0\pm1.0$
Babar $[10]$	$-2.3\pm4.8\pm1.4$	$4.3\pm4.8\pm1.1$
This analysis	$5.8\pm2.0\pm1.1$	$3.8\pm2.0\pm0.1$

Ultimate precision:

@300/fb expect $\sigma(\gamma) \sim I^{\circ} \rightarrow$ use γ as input and measure $\beta_{(s)}$

Need improved $\Delta m_{(s)}$, currently statistics limited \rightarrow require better understanding of LHCb length/momentum scales (~0.03%), more simulation (LHCb k-factor correction), vertex resolution (Belle-II) and fit biases (LHCb+Belle-II)

Summary

Most precise, statistically dominated, measurements of $\phi_{d,s}$ from $b \rightarrow c \overline{c} s$ transitions \rightarrow look forward to Run-2 updates (and LHCb-upgrade)

• $B_{s^0} \rightarrow J/\psi KK, B_{s^0} \rightarrow J/\psi \pi \pi, ... and B^0 \rightarrow J/\psi K_S + higher [c\bar{c}] modes$

Roadmap to control **penguin contributions** defined (U-spin, $SU(3)_f$)

LHCb measuring ϕ_s using penguin-dominated modes \rightarrow promising precision

• $B_{s^0} \rightarrow \phi \phi$ and $B_{s^0} \rightarrow (K\pi)(K\pi)$

Future:

- need improved measurements of **B-mixing parameters/lifetimes**

• penguin-free $b \rightarrow c \bar{u} d$ transitions (e.g., $B_s^0 \rightarrow D^0 K_{S,} B^0 \rightarrow D^0 \pi^+ \pi^-$) will become interesting

[Also see talks from Keri, Matt, Tom and Marina in this session]

Penguin pollution roadmap: ϕ_s

 $\phi(1020)$ is mixture of SU(3)_f octet and singlet \rightarrow how to handle this in SU(3) analysis of $B_s^0 \rightarrow J/\psi \phi$?

Option: use $b \rightarrow c \overline{c} d$ modes such as $B_s^0 \rightarrow J/\psi K^*$ and $B^0 \rightarrow J/\psi \omega$

What about $B_s^0 \rightarrow J/\psi\omega$ with predicted BR ~ 6x10-6? \rightarrow will require good mass resolution, which is ~3x worse than $B^0 \rightarrow J/$ $\psi\pi\pi$

With 300/fb, we could look at $\omega \rightarrow \mu\mu$, giving better resolution and low background

Search for $B^0 \rightarrow J/\psi\phi$, with predicted BR ~2×10⁻⁷, which proceeds only via E + PA diagrams, which can tell us about comparisons between $B_{s^0} \rightarrow J/\psi \phi$ and $B_{s^0} \rightarrow J/\psi K^*$

$$\mathcal{B}(\overline{B}^0 \to J/\psi \phi) < 1.9 \times 1$$

 $.0^{-7}$

[LHCb, PRD 88 (2013) 072005]

Pengiun-free modes

Time evolution of e.g., $B^0 \rightarrow D^{(*)}h^0$ decays governed by β with **no penguin contribution** \rightarrow provides SM reference

ϕ_d from $b \rightarrow c \bar{u} d$ transitions

$$B^{0} \rightarrow D_{CP}^{(*)}h^{0} \qquad \sin 2\beta = 0.66 \pm 0.10 \pm 0.06, \qquad C = -0.02 \pm 0.07 \pm 0.03 \qquad \text{[Belle+BaBar, PRL 115 (2015)]} \\ B^{0} \rightarrow D^{(*)}h^{0}, D \rightarrow K_{S}\pi\pi \sin 2\beta = 0.80 \pm 0.14 \pm 0.06 \pm 0.03; \qquad \cos 2\beta = 0.91 \pm 0.22 \pm 0.09 \pm 0.07 \qquad \text{[Belle+BaBar arXiv:1804.061]}$$

Dominant systematic from vertex reconstruction, peaking backgrounds (and $D \rightarrow Ks\pi\pi$ Dalitz model)

 $B^0 \rightarrow D^{(*)}h^0$ is difficult at LHCb due to γ 's in h^0 decay so target for upgrade-I, -II is time-dependent Dalitz analysis of $B^0 \rightarrow D^0 \pi^+ \pi^-$ and $B^0{}_s \rightarrow D^0 K^+ K^-$, which measures $cos 2\beta$ and $sin 2\beta$ when $D \rightarrow CP$ eigenstate [Latham, Gershon, JPG 36 (2009) 025006]

Ultimate precision @ 50 (300) fb⁻¹:

 $\sigma(sin2\beta) \sim 0.018 \ (0.007) \ and \ \sigma(cos2\beta) \sim 0.030 \ (0.017).$ Need to model $\pi\pi$ S-wave [LHCb upgrade-II physics document, in prep] Model-independent $D \rightarrow Ks\pi\pi$ can give $\sigma(\beta) < 1^{\circ}$ [Bondar et al., JHEP 03 (2018) 195] [Bondar et al., PLB 624 (2005) 1]

1

ϕ_s from $b \rightarrow c \bar{u} d$ transitions

 $B_{s^{0}} \rightarrow D^{0}K_{s}$: no possibility of penguin pollution ($r \sim 0.02$), but typically requires knowledge of γ , so expect some biases. Theoretically cleaner by x [QFleischer, NPB 659 (2003) 321] [Fleischer, PLB 562 (2003) 234]

$$\mathcal{B}(B_s^0 \to \bar{D}^0 \bar{K}^0) = [4.3 \pm 0.5(\text{stat}) \pm 0.3(\text{syst}) \pm 0.3(\text{frag}) \pm 0$$
$$\mathcal{B}(B_s^0 \to \bar{D}^{*0} \bar{K}^0) = [2.8 \pm 1.0(\text{stat}) \pm 0.3(\text{syst}) \pm 0.2(\text{frag}) \pm 0$$
$$\text{fs/fd and Bl}$$

Future:

- improved K_S reconstruction

- inclusion of more D decay modes, including multibody D decays, either model dependent or independent.

 $0.6(\text{norm})] \times 10^{-4}$ $0.4(\text{norm})] \times 10^{-4}$ $R(B^0 \rightarrow D^0 \text{KS})$

$b \rightarrow c \bar{u} d(s) \text{ and } b \rightarrow u \bar{c} d(s)$

 $B_{(s)}^{0} \rightarrow D_{(s)}^{\pm}h^{\pm}$ are sensitive to $\gamma \pm 2\beta_{(s)}$ without penguin pollution. Taking $\beta_{(s)}$ from $b \rightarrow c\overline{c}s$ transitions we can measure γ . $r(D\pi) \sim 0.02$, $r(D_sK) \sim 0.4$

Data-driven decay time efficiency, tagging and resolution calibration. Yields increase by factor ~4 after Run 2 (hadronic trigger efficiency and $\sigma_{bb} 8 \rightarrow 13 \text{ TeV}$)

$B^0 \rightarrow D^{\mp}\pi^{\pm}$	$S_f[\%]$	$S_{ar{f}}$ [%]
Belle [11]	$6.8\pm2.9\pm1.2$	$3.1\pm3.0\pm1.2$
Babar $[10]$	$-2.3\pm4.8\pm1.4$	$4.3\pm4.8\pm1.4$
This analysis	$5.8\pm2.0\pm1.1$	$3.8\pm2.0\pm0.7$

Ultimate precision:

@300/fb expect $\sigma(\gamma) \sim 0.4^\circ \rightarrow$ use γ as input and measure $\beta_{(s)}$

Need improved $\Delta m_{(s)}$, currently statistics limited \rightarrow require better understanding of LHCb length/momentum scales (~0.03%), more simulation (LHCb k-factor correction), vertex resolution (Belle-II) and fit biases (LHCb+Belle-II)

ϕ_d from $b \rightarrow c\bar{c}d$ transitions

4 σ evidence for CPV in $B^0 \rightarrow D^+D^-$ Use ϕ_d from $b \rightarrow c \overline{c} s$ as input to compute the penguin phase shift

[Belle, PRD 86 (2012) 071103] [Fleischer, EPJC 51 (2007) 849] [Jung, Schacht, PRD 91 (2015) 034027] [Bel et al., JHEP 07 (2015) 108] SU(3) relation to Bs \rightarrow DsDs, control penguins

Production asymmetries

Source Signal n Decay-ti Δm_d , Δ Decay-ti Final-st Decay-ti Combina Partially $\Delta\Gamma_s$ $A_{\rm D}(K^+)$ $|q/p|_{B^0},$ Uncertai Differen Neglectin Validity $A_{CP}(B^+$ $A_{\rm D}(\overline{K}^0)$ Total sy

 $A_{\rm P}(A_{\rm P}(A_{P$

- $A_{\rm P}($
- $A_{\mathrm{P}}($

	Unc	ertainty [$$	$\sqrt{s} = 7$ Te	eV]
	$A_{\rm P}(B^+)$	$A_{\rm P}(B^0)$	$A_{\rm P}(B_s^0)$	$A_{\mathrm{P}}(\Lambda_b^0)$
nass shape	0.0016	0.0005	0.0036	0.0024
ime bias	0.0000	0.0000	0.0008	0.0004
Δm_s	0.0000	0.0001	0.0014	0.0007
ime resolution	0.0000	0.0000	0.0026	0.0014
ate radiation	0.0000	0.0001	0.0000	0.0001
ime reconstruction efficiency	0.0000	0.0001	0.0000	0.0001
atorial background mass shape	0.0003	0.0000	0.0004	0.0003
y reconstructed background mass shape	0.0000	0.0000	0.0029	0.0015
	0.0000	0.0000	0.0000	0.0000
)	0.0018	0.0000	0.0000	0.0013
$ q/p _{B^{0}_{*}}$	0.0000	0.0009	0.0021	0.0013
inties from fragmentation fractions	0.0000	0.0000	0.0000	0.0058
ce between ω_i or ω_i^{data}	0.0003	0.0003	0.0003	0.0003
ing term with $A_{\rm P}(\Xi_b)$ in Eq. 3	0.0000	0.0000	0.0000	0.0071
of $N_b = N_{\overline{b}}$ in each bin	0.0000	0.0000	0.0000	0.0032
$\to J/\psi K^+$)	0.0028	0.0000	0.0000	0.0028
	0.0001	0.0000	0.0000	0.0002
stematic uncertainty	0.0037	0.0011	0.0059	0.0108

$B^0)_{\sqrt{s}=7\mathrm{TeV}}$	=	$0.0044 \pm 0.0088 \text{ (stat)} \pm 0.0011 \text{ (syst)}$
$B^0)_{\sqrt{s}=8\mathrm{TeV}}$	=	$-0.0140 \pm 0.0055 \text{ (stat)} \pm 0.0010 \text{ (syst)}$
$B_s^0)_{\sqrt{s}=7\mathrm{TeV}}$	=	$-0.0065 \pm 0.0288 \text{ (stat)} \pm 0.0059 \text{ (syst)}$
$B_s^0)_{\sqrt{s}=8{ m TeV}}$	=	$0.0198 \pm 0.0190 \text{ (stat)} \pm 0.0059 \text{ (syst)}$

$\Delta \Gamma_d \neq 0$?

Measurements of $S_f = sin 2\beta$ assume $\Delta \Gamma_d = 0$

Measure $\Delta \Gamma_d$ by comparing decay time distributions of $B^0 \to J/\psi K^* + B^0 \to J/\psi K_S$ [Gershon, JPG 38 (2011) 015007]

 $\Delta \Gamma_d \neq 0$ could explain the D0 dimuon asymmetry

$$A_{CP} = C_d A_{SL}^d + C_s A_{SL}^s + C_{\Delta \Gamma_d} \frac{\Delta \Gamma_d}{\Gamma_d}$$

[Borissov, Hoeneisen PRD 87 (2013) 074020] [D0, PRD 89 (2014) 012002]

$$A_{CP}(t) \equiv \frac{\Gamma_{\overline{B}{}^{0} \to f} - \Gamma_{B^{0} \to f}}{\Gamma_{\overline{B}{}^{0} \to f} + \Gamma_{B^{0} \to f}} = \frac{S_{f} \sin(\Delta m t) - C_{f} \cos(\Delta r t)}{\cosh(\Delta \Gamma t/2) + A_{\Delta \Gamma} \sinh(\Delta r t)}$$

SM $\Delta \Gamma_d / \Gamma_d = (-3.97 \pm 0.90) \times 10^{-3}$ [Artuso et al]

[also LHCb with only 2011 data, JHEP 04 (2014) 114]

Polarisation-dependent ϕ_s

Penguin pollution and/or CP violation could be different for each polarisation state, $f \in (0, \perp, \parallel, S)$

> [Bhattacharya et al., IJMP A28 (2013) 1350063] [Liu et al., PRD 89 (2014) 094010] [Fleischer, ...]

Relax assumption that $\mathcal{M} \equiv \eta_f(q/p)(\overline{A_f}/A_f)$ is same for all $(J/\psi K^+K^-)_f$ polarisations \rightarrow measure $\lambda f = |\lambda f| exp(-i\phi f_s)$

No sign of polarisation dependence \rightarrow penguins are small

Ultimate precision: Need to monitor stat + syst correlations between these parameters and others (e.g., $\Delta \Gamma_{s_f} | A_f |^2$) from $B_s^0 \rightarrow J/\psi K^+ K^-$ angular fit

 $\operatorname{CP} | \mathrm{J}/\psi\phi\rangle_{\ell} = (-1)^{\ell} | \mathrm{J}/\psi\phi\rangle_{\ell}$

Parameter	Value
$ \lambda^0 $	$1.012 \pm 0.058 \pm 0.013$
$ \lambda^{\parallel}/\lambda^{0} $	$1.02 \pm 0.12 \pm 0.05$
$ \lambda^{\perp}/\lambda^{0} $	$0.97 \ \pm 0.16 \ \pm 0.01$
$ \lambda^{ m S}/\lambda^{ m 0} $	$0.86 \pm 0.12 \pm 0.04$
ϕ_s^0 [rad]	$-0.045 \pm 0.053 \pm 0.007$
$\phi_s^{\parallel} - \phi_s^0 \text{ [rad]}$	$-0.018 \pm 0.043 \pm 0.009$
$\phi_s^{\perp} - \phi_s^0 \text{ [rad]}$	$-0.014 \pm 0.035 \pm 0.006$
$\phi_s^{\rm S} - \phi_s^{\rm 0} \; [\text{rad}]$	$0.015 \pm 0.061 \pm 0.021$

$B_s^0 \rightarrow J/\psi \phi$ systematic uncertainties

Source	Γ_s $[ps^{-1}]$	$\Delta\Gamma_s$ [ps ⁻¹]	$ A_{\perp} ^2$	$ A_0 ^2$	$\delta_{\parallel} \ [m rad]$	δ_{\perp} [rad]	ϕ_s [rad]	$ \lambda $	$[PRL 114,0418] \Delta m_s$ $[m ps^{-1}]$
Total stat. uncertainty	0.0027	0.0091	0.0049	0.0034	$^{+0.10}_{-0.17}$	$^{+0.14}_{-0.15}$	0.049	0.019	$^{+0.055}_{-0.057}$
Mass factorisation	_	0.0007	0.0031	0.0064	0.05	0.05	0.002	0.001	0.004
Signal weights (stat.)	0.0001	0.0001	_	0.0001	_	—	—	—	-
b-hadron background	0.0001	0.0004	0.0004	0.0002	0.02	0.02	0.002	0.003	0.001
B_c^+ feed-down	0.0005	_	_	_	—	_	—	—	_
Angular resolution bias	_	_	0.0006	0.0001	$^{+0.02}_{-0.03}$	0.01	_	_	_
Ang. efficiency (reweighting)	0.0001	_	0.0011	0.0020	0.01	-	0.001	0.005	0.002
Ang. efficiency (stat.)	0.0001	0.0002	0.0011	0.0004	0.02	0.01	0.004	0.002	0.001
Decay-time resolution	—	—	_	_	—	0.01	0.002	0.001	0.005
Trigger efficiency (stat.)	0.0011	0.0009	—	_	—	_	_	_	_
Track reconstruction (simul.)	0.0007	0.0029	0.0005	0.0006	$^{+0.01}_{-0.02}$	0.002	0.001	0.001	0.006
Track reconstruction (stat.)	0.0005	0.0002	_	_	_	_	_	_	0.001
Length and momentum scales	0.0002	—	_	_	_	_	_	_	0.005
S-P coupling factors	—	_	_	_	0.01	0.01	_	0.001	0.002
Fit bias	_	_	0.0005	_	_	0.01	_	0.001	_
Quadratic sum of syst.	0.0015	0.0032	0.0036	0.0067	$^{+0.06}_{-0.07}$	0.06	0.006	0.007	0.011

Lifetime efficiency → next slide

Next $B_s \rightarrow J/\psi \phi$ update will fix mass factorisation (new model). Backgrounds should scale Angular efficiencies will continue to dominate \rightarrow large MC and data control channels (e.g., $B^0 \rightarrow J/\psi K^*$)

Systematic uncertainties: lifetimes

Major systematic will continue to be understanding decay time efficiency \Rightarrow need large MC samples and

data control channels

Need improved measurement of B^0 , B^+ lifetimes, which requires excellent control of absolute efficiency (LHCb) and vertex resolution (Belle-II)

> $\tau(B^0) = 1.518 \pm 0.004 \text{ ps}$ [HFLAV] $\tau(B^+) = 1.638 \pm 0.004 \text{ ps}$

Absolute lifetime predictions suffer from uncertainties ~ m_b^5 ; lifetime ratios under better control [Lenz, arXiv:1405.3601]

 $\tau(B_s)/\tau(B^0) = 1.00050 \pm 0.00108 - 0.0225\delta$ [Jubb et al, arXiv:1603.07770] $\tau(B_s)/\tau(B^0) = 0.990 \pm 0.004$ [HFLAV]

Next LHCb $B_s^0 \rightarrow J/\psi\phi$ update will measure $\sigma(\Gamma_s / \Gamma_d) \sim 0.005$

Impact on new physics

Even given the constraints that show consistency with the SM, NP still allowed at the 10% level

Penguin contributions

Penguin contribution could lead to non-zero CPV in decay for $b \rightarrow c \overline{c} s$ transitions. Currently C_f values in $B^{0}(s)$ decays are consistent with zero at few %

Most precise constraint from $A_{CP}(B^+ \rightarrow J/\psi K^+)$ but possible suppression from small strong phase difference \rightarrow more information required

$$\mathcal{A}_{CP}(B^+ \to J/\psi K^+) = (0.09 \pm 0.27 \pm$$

$$\mathcal{A}^{CP}(B^+ \to J/\psi \,\pi^+) = (1.91 \pm 0.89 \pm$$

Dominant syst from $K\pi$ detector asymmetry determination

Same argument for $b \rightarrow c \overline{c} d$ transitions $(B^+ \rightarrow J/\psi \pi^+, B^- \rightarrow D^- D^0)$

 $(0.07) \times 10^{-2}$

 $0.16) \times 10^{-2}$

[LHCb PRD 95 (2017) 052005] [LHCb JHEP 03 (2017) 036]

B-factories have precision of $\sim 10\%$ on D⁻ mode $\mathcal{A}^{CP}(B^- \to D_s^- D^0) = (-0.4 \pm 0.5 \pm 0.5)\%$ $\mathcal{A}^{CP}(B^- \to D^- D^0) = (2.3 \pm 2.7 \pm 0.4)\%$ [LHCb arXiv:1803.10990]

$B^{0} \rightarrow J/\psi \pi^{0}$ and DD

[Belle-II projections @ 50 ab⁻¹ from A. Gaz, P. Urquijo, L Li Gioi]

 $\sigma(S) = 0.027 \text{ (stat)} \pm 0.027 \text{ (syst)}$ $\sigma(A) = 0.035 \text{ (stat)} \pm 0.017 \text{ (syst)}$

[Belle, PRD 86 (2012) 071103]

Penguin pollution roadmap: ϕ_s

[Bel et al., JHEP 07 (2015) 108]

penguins for ϕ_s in Bs \rightarrow DsDs decays

36 **Future**: Bs0 \rightarrow Ds*Ds* and B0 \rightarrow D*D*, need TD angular analysis

- Similar story for ϕ_s from $B_s \rightarrow D_s D_s$ decays
- Use direct/mixing CP asymmetries and ratios of BRs of $B^0 \rightarrow D^+D^-$ decays to constrain size of penguins
- H observable is not theoretically clean due to possible sizeable E+PA contributions
 - penguin shift may be larger here...

- Enhanced E + PA topologies, indications for significant penguin contributions \rightarrow ultimately control

[Fleischer, PRD 55 (1997) 259]

B_s⁰ effective lifetimes

Effective lifetimes of CP-even/odd final states constrain $\Gamma_{L,H}$ and give information on ϕ_s (ignores sub-leading penguins...)

$$\tau_{\text{eff}}\Gamma_s = 1 + A_f^{\Delta\Gamma_s} y_s + \left[2 - (A_f^{\Delta\Gamma_s})^2\right] y_s^2 + \dots$$

Tagged $B_s^0 \rightarrow J/\psi \phi$ will always dominate the precision for mixing and lifetime quantities, but useful to measure τ_{eff} as cross-check

Run 2 and beyond: time-dependent flavour-tagged analyses $\frac{1}{2} \sum_{200}^{200} \frac{1}{100}$ become possible for some channels (e.g., with 300/fb, we could $\frac{1}{2}_{2}$ 150 have 4% x 300k = ~12k tagged $B_s^0 \rightarrow J/\psi\eta, \eta \rightarrow \gamma\gamma$ candidates) 50

LHCb run 1 and 2

Flavour tagging

Upgrade challenge: increase in track multiplicity and pile-up (~6 for upgrade-I and ~55 for upgrade-II) that have negative effect on ω and ε (tag)

FT performance directly linked to the ability to associate \Leftrightarrow track. To improve/maintain tagging performance need

Hardware: timing information (upgrade-II workshops)

Software: deep neural networks to learn correlations between all tracks and the signal B meson

Should be able to regain Run-2 performance in Run-3 by retuning algorithms and use of deep learning inclusive tag

$$\epsilon_{\text{tag}} = \frac{N_{\text{tagged}}}{N_{\text{tagged}} + N_{\text{untagged}}} \qquad \omega = \frac{N_{\text{wrong}}}{N_{\text{right}} + N_{\text{wrok}}}$$

$$\epsilon_{\text{eff}} = \epsilon_{\text{tag}} \mathcal{D}^2 = \epsilon_{\text{tag}} \langle (1 - 2\omega)^2 \rangle \qquad \sigma_{\text{stat}} (A_{CP}) \propto 1/\sqrt{2}$$

$$\frac{1.0}{8} = \frac{1}{8} \frac{1}{8}$$

[Heinicke, CERN-THESIS-2016-152]

"In view of this situation it is safe to say that $SU(3)_F$ -based estimates of the penguin pollution in $B_{s^0} \rightarrow J/\psi \phi$ rest on **shaky ground**"

[Nierste CKM2016 arXiv:1704.04529]

 $\phi_s^{d\bar{d}} \operatorname{from} B_s^0 \longrightarrow (K^+\pi^-)(K^-\pi^+)$

4

		Deremotor	Value
Parameter	Value	Farameter	value
Con	nmon parameters	Vector/	Tensor (VT and TV)
$\phi^{d\overline{d}}$ [rad]	-0.10 + 0.13 + 0.14	f^{VT}	$0.160 \pm 0.016 \pm 0.049$
φ_s [rau]	$-0.10 \pm 0.13 \pm 0.14$	$f_{ m L}^{VT}$	$0.911 \pm 0.020 \pm 0.165$
$ \lambda $	$1.035 \pm 0.034 \pm 0.089$	f^{VT}_{\parallel}	$0.012 \pm 0.008 \pm 0.053$
Vec	tor/Vector (VV)	f^{TV}	$0.036 \pm 0.014 \pm 0.048$
f^{VV}	$0.067 \pm 0.004 \pm 0.024$	f_{r}^{TV}	$0.62 \pm 0.16 \pm 0.25$
$f_{ m L}^{VV}$	$0.208 \pm 0.032 \pm 0.046$	f_{\perp}^{TV}	$0.24 \pm 0.10 \pm 0.14$
f_{\parallel}^{VV}	$0.297 \pm 0.029 \pm 0.042$	δ_{2}^{VT} [rad]	-2.06 + 0.19 + 1.17
$\delta_{\parallel}^{VV'}$ [rad]	$2.40 \pm 0.11 \pm 0.33$	δ_0^{VT} [rad]	$-1.8 \pm 0.4 \pm 1.0$
δ_{\perp}^{VV} [rad]	$2.62 \pm 0.26 \pm 0.64$	δ^{VT} [rad]	$-3.2 \pm 0.3 \pm 1.2$
Scalar/	Vector (SV and VS)	$\delta_0^{\overline{T}V}$ [rad]	$1.91 \pm 0.30 \pm 0.80$
f^{SV}	$0.329 \pm 0.015 \pm 0.071$	δ_{\parallel}^{TV} [rad]	$1.09 \ \pm 0.19 \ \pm 0.55$
f^{VS}	$0.133 \pm 0.013 \pm 0.065$	δ^{TV} [rad]	$0.2 \pm 0.4 \pm 1.1$
δ^{SV} [rad]	$-1.31 \pm 0.10 \pm 0.35$		sor/Tensor(TT)
δ^{VS} [rad]	$1.86 \pm 0.11 \pm 0.41$	f^{TT}	$\frac{0.011 \pm 0.003 \pm 0.007}{0.011 \pm 0.003}$
Sca	alar/Scalar (SS)	f_{τ}^{TT}	$\begin{array}{c} 0.011 \pm 0.000 \pm 0.001 \\ 0.25 \ \pm 0.14 \ \pm 0.18 \end{array}$
f^{SS}	$0.225 \pm 0.010 \pm 0.069$	f_{\parallel}^{TT}	$0.17 \pm 0.11 \pm 0.14$
δ^{SS} [rad]	$1.07 \pm 0.10 \pm 0.40$	$f^{\parallel_1}_T$	$0.30 \pm 0.18 \pm 0.21$
Scalar/	Tensor (ST and TS)	$f_{\parallel_{2}}^{\perp_{1}}$	$0.015 \pm 0.033 \pm 0.107$
f^{ST}	$0.014 \pm 0.006 \pm 0.031$	δ_0^{TT} [rad]	$1.3 \pm 0.5 \pm 1.8$
f^{TS}	$0.025 \pm 0.007 \pm 0.033$	δ_{\parallel}^{TT} [rad]	$3.00 \pm 0.29 \pm 0.57$
δ^{ST} [rad]	$-2.3 \pm 0.4 \pm 1.7$	δ^{TT}_{\perp} [rad]	$2.6 \pm 0.4 \pm 1.5$
δ^{TS} [rad]	$-0.10 \pm 0.26 \pm 0.82$	$\delta_{\parallel_{2}}^{\overline{T}T}$ [rad]	$2.3 \pm 0.8 \pm 1.7$
		$\delta_{\perp_2}^{\parallel^2}$ [rad]	$0.7 \pm 0.6 \pm 1.3$
			-

ϕ_s^{dd} from $B_s^0 \rightarrow (K^+\pi^-)(K^-\pi^+)$

Table 4: Summary of the systematic uncertainties on the two CP parameters, the CP-averaged fractions and the strong phase differences (in radians) for each of the components listed in Table 1.

	Parameter	$\phi^{d\overline{d}}$ [rad	$ \lambda $	f^V	$V = f_{L}^{V}$	$V = f_{\mu}^V$	VV b	$\delta^{VV}_{\parallel} = \delta^{V}_{\parallel}$	/V	f^{SV}	f^{VS}	δ^{SV}	δ^{VS}	f^{SS}	$\delta \delta^S$	SS		
$K\pi$ S-wave and higher	Yield and shape of mass model	$\frac{\varphi_s}{0.012}$	0.00	1 0.00	$\frac{JL}{0.00}$	$\frac{1}{04}$ 0.0	04 0.	.011 0.0	$\frac{1}{20}$,002 ().003	0.023	0.023	3 0.00	0.0	12		
	Signal weights of mass model	0.012	0.00'	7 0.00	02 0.00	06 0.0	05 0.	.024 0.1	112 0	.004 (0.005	0.049	0.02	2 0.00)5 0.0	947		
K^* resonances	Decay-time-dependent fit procedure	0.006	0.00	2 0.00	01 0.00	06 0.0	02 0.	.007 0.0	017 0	.003 (0.002	0.007	0.02'	7 0.00	0.0	09		
	Decay-time-dependent fit parameterisation	0.049	0.013	3 0.02	21 0.02	25 0.0)26 0.	.187 0.2	202 0	.042 (0.029	0.159	0.23^{4}	4 0.06	64 0.2	27		
	Acceptance weights (simulated sample size)	0.106	0.078	8 0.00	04 0.03	31 0.0)29 0.	.236 0.5	564 0	.037 (0.039	0.250	0.29	0 0.01	.5 0.2	56		
	Other acceptance and resolution effects	0.063	0.008	8 0.00	05 0.01	18 0.0	05 0.	.136 0.1	149 0	.006 (0.004	0.167	0.12	4 0.01	7 0.1	.94		
	Production asymmetry	0.002	0.00	2 0.00	0.00	0.0 0.0	00 0.	.001 0.0	017 0	.002 (0.002	0.002	0.00	8 0.00	0.0	02		
	Total	0.141	0.089	9 0.05	24 0.04	46 0.0	042 0.	.333 0.6	641 0	.071 (0.065	0.346	0.40	5 0.06	9 0.3	99		
	Parameter	f^{ST}	f^{TS}	δ^{ST}	δ^{TS}	f^{VT}	f_L^{VT}	f_{\parallel}^{VT}	f^{TV}	f_L^{TV}	f_{\parallel}^{T}	$\Gamma V = \delta$	VT_0	δ^{VT}_{\parallel}	δ_{\perp}^{VT}	$\overline{\delta_0^{TV}}$	δ^{TV}_{\parallel}	δ_{\perp}^{TV}
	Yield and shape of mass model	0.002	0.004	0.111	0.023	0.001	0.003	3 0.001	0.00	1 0.04	3 0.0	025 0.	023	0.055	0.110	0.053	0.018	0.06
	Signal weights of mass model	0.004	0.006	0.151	0.105	0.002	0.003	3 0.001	0.00	1 0.04	3 0.0	029 0.	025	0.131	0.126	0.080	0.073	0.150
	Decay-time-dependent fit procedure	0.001	0.002	0.248	0.017	0.002	0.004	4 0.002	0.002	2 0.00	8 0.0	05 0.	012	0.069	0.025	0.062	0.017	0.030
	Decay-time-dependent fit parameterisation	0.006	0.017	0.736	0.247	0.011	0.053	3 0.019	0.008	8 0.08	0.0	048 0.	286	0.308	0.260	0.260	0.228	0.403
	Acceptance weights (simulated sample size)	0.014	0.015	1.463	0.719	0.026	0.145	5 0.054	0.02'	7 0.19	9 0.1	.02 1.	117	1.080	0.888	0.712	0.417	0.94'
	Other acceptance and resolution effects	0.002	0.003	0.184	0.226	0.015	0.024	4 0.004	0.00	5 0.04	5 0.0	$017 ext{ } 0.$	163	0.168	0.191	0.229	0.246	0.171
	Production asymmetry	0.001	0.001	0.037	0.026	0.001	0.003	3 0.001	0.002	2 0.01	2 0.0	06 0.	015	0.030	0.018	0.003	0.007	0.041
	Total	0.031	0.033	1.688	0.817	0.049	0.165	5 0.063	0.048	8 0.25	2 0.1	43 1.	171	1.159	0.970	0.802	0.546	1.076
	Parameter	f^{TT}	f_L^{TT}	$f_{\parallel_1}^{TT}$	$f_{\perp_1}^{TT}$	$f_{\parallel_2}^{TT}$	δ_0^{TT}	$\delta_{\parallel_1}^{TT}$	$\delta^{TT}_{\perp_1}$	$\delta_{\parallel_2}^{TT}$	δ_{\perp}^{T}	TT_{-2}						
	Yield and shape of mass model	0.000	0.045	0.019	0.037	0.002	0.038	8 0.027	0.009	9 0.07	9 0.1	14						
	Signal weights of mass model	0.000	0.066	0.025	0.024	0.002	0.147	0.046	0.112	2 0.12	3 0.2	215						
	Decay-time-dependent fit procedure	0.001	0.022	0.022	0.014	0.004	0.127	0.036	0.068	8 0.05	8 0.0	40						
	Decay-time-dependent fit parameterisation	0.005	0.051	0.071	0.113	0.038	1.213	3 0.199	0.685	5 0.82	0 0.4	76						
	Acceptance weights (simulated sample size)	0.003	0.135	0.110	0.127	0.077	1.328	8 0.454	1.348	8 1.44	3 1.1	.61						
	Other acceptance and resolution effects	0.002	0.031	0.028	0.056	0.024	0.226	6 0.275	0.156	6 0.34	3 0.3	301						
	Production asymmetry	0.000	0.002	0.001	0.008	0.003	0.005	5 0.002	0.062	2 0.01	5 0.0	43						
	Total	0.007	0.176	0.142	0.205	0.107	1.825	5 0.573	1.546	6 1.70	6 1.3	30						

[JHEP 03 (2018) 140]

'	

$\phi_s \bar{ss} \operatorname{from} B_s \to \phi \phi \to (K^+ K^-) (K^+ K^-)$

Parameter	Result
$\overline{\phi_s^{s\overline{s}s}}$ (rad)	-0.07 ± 0.13
$ \lambda $	1.02 ± 0.05
$ A_{\perp} ^2$	0.287 ± 0.008
$ A_0 ^2$	0.382 ± 0.008
$\overline{\delta_{\perp}} (\text{ rad })$	2.81 ± 0.21
δ_{\parallel} (rad)	2.52 ± 0.05

Parameter	Mass model	$\mathbf{A}\mathbf{A}$	TA	TR	Fit bia
$ A_0 ^2$	0.0035	0.0098	0.0008	0.0001	0.0018
$ A_{\perp} ^2$	0.0021	0.0046	0.0007	0.0002	0.0012
$\delta_{\parallel} ~({\rm rad})$	0.0128	0.0653	0.0049	0.0031	0.0179
δ_{\perp} (rad)	0.0640	0.0100	0.0085	0.0064	0.0701
$\phi_s^{s\overline{s}s}$ (rad)	0.0119	0.0072	0.0077	0.0035	0.0126
$ \lambda $	0.0063	0.0217	0.0023	0.0053	0.0097

[LHCb-CONF-2018-001]

2011-2016 dataset

		δ_{\parallel}	$ A_{\perp} ^2$	δ_{\perp}	$ A_0 ^2$	$ \lambda $					
	δ_{\parallel}	1.00	0.14	0.13	-0.03	0.02					
	$ \ddot{A}_{\perp} ^2$		1.00	0.01	-0.45	0.00					
	δ_{\perp}			1.00	0.00	-0.26					
	$ A_0 ^2$				1.00	-0.01					
	$ \lambda $					1.00					
	$\phi_s^{s\overline{s}s}$										
	' 3					I					
$\widehat{\exists}^2$											
			₹ <u>1.8</u>	Ι	LHCb Preli	minary					
			- 0.1ar			$B_s \rightarrow D_s \pi^+$					
$\frac{1}{2}$			₿ ^{1.4}	– – – – –	I						
8	0.0106		1.2								
2	0.0052										
9	0.0692		0.8		I						
	0.0960		0.6	Eff	ion ov fu						
6	0.0206										
7	0.0253		0.2	$B_s^0 \rightarrow$	$D_s\pi$ co	ontrol					
0											

Triple product asymmetries from $B_s^0 \rightarrow \phi \phi$

 $\sin \Phi = (\hat{n}_{V_1} \times \hat{n}_{V_2}) \cdot \hat{p}_{V_1},$ $\sin 2\Phi = 2(\hat{n}_{V_1} \cdot \hat{n}_{V_2})(\hat{n}_{V_1} \times \hat{n}_{V_2}) \cdot \hat{p}_{V_1}$

 $U \equiv \sin \Phi \cos \Phi \quad V \equiv \sin(\pm \Phi)$

[LHCb-CONF-2018-001]

$$A_U \equiv \frac{\Gamma(U > 0) - \Gamma(U < 0)}{\Gamma(U > 0) + \Gamma(U < 0)}$$
$$A_V \equiv \frac{\Gamma(V > 0) - \Gamma(V < 0)}{\Gamma(V > 0) + \Gamma(V < 0)}$$

