Exploring for New Physics using Charged Lepton Flavor Violation

Doug Glenzinski Fermilab May 2018

Outline

- Motivation & Introduction
- Experimental Summary
- Future Expectations
- Summary

Why Charged Lepton Flavor Violation (CLFV)?

- Quarks mix, v mix... what about I⁺?
 CLFV : neutrino-less transitions of the type μ → e, τ → e, τ → μ
- There is no known Global Symmetry that requires LF conservation
- Many extensions to the Standard Model predict large CLFV effects
- CLFV offers opportunity to probe $\Lambda_{\rm NP} \sim O(10^3 10^4)$ TeV >> TeV

Some CLFV Processes

Process	Current Limit	Next Generation exp
$\tau \rightarrow \mu \eta$	BR < 6.5 E-8	
$\tau \rightarrow \mu \gamma$	BR < 6.8 E-8	10 ⁻⁹ - 10 ⁻¹⁰ (Belle II, LHCb)
$\tau ightarrow \mu \mu \mu$	BR < 3.2 E-8	
$\tau \rightarrow eee$	BR < 3.6 E-8	
$K_L \rightarrow e \mu$	BR < 4.7 E-12	NA62
$K^+ \rightarrow \pi^+ e^- \mu^+$	BR < 1.3 E-11	
$B^0 ightarrow e \mu$	BR < 7.8 E-8	LHCb, Belle II
$B^+ ightarrow K^+ e \mu$	BR < 9.1 E-8	
$\mu^{+} \rightarrow e^{+}\gamma$	BR < 4.2 E-13	10 ⁻¹⁴ (MEG)
$\mu^+ \rightarrow e^+ e^+ e^-$	BR < 1.0 E-12	10 ⁻¹⁶ (PSI)
μ⁻N → e⁻N	R _{μe} < 7.0 E-13	10 ⁻¹⁷ (Mu2e, COMET)

(current limits from the PDG)

Expect significant progress in near future

Some CLFV Processes

Process	Current Limit	Next Generation exp
$\tau \rightarrow \mu$ η	BR < 6.5 E-8	
$\tau ightarrow \mu\gamma$	BR < 6.8 E-8	10 ⁻⁹ - 10 ⁻¹⁰ (Belle II, LHCb)
$τ \rightarrow μμμ$	BR < 3.2 E-8	
$\tau \rightarrow eee$	BR < 3.6 E-8	
$K_L \rightarrow e\mu$	BR < 4.7 E-12	NA62
$K^+ \rightarrow \pi^+ e^- \mu^+$	BR < 1.3 E-11	
B⁰ → eµ	BR < 7.8 E-8	LHCb, Belle II
B⁺ → K⁺eµ	BR < 9.1 E-8	
$\mu^+ \rightarrow e^+ \gamma$	BR < 4.2 E-13	10 ⁻¹⁴ (MEG)
$\mu^+ \rightarrow e^+e^+e^-$	BR < 1.0 E-12	10 ⁻¹⁶ (PSI)
μ⁻N → e⁻N	R _{μe} < 7.0 E-13	10 ⁻¹⁷ (Mu2e, COMET)
		(current limits from the PDG)

Experiments using muons among the most sensitive

CLFV in the ν -Standard Model

- Extremely suppressed in the Standard Model : rate ~ Δm_v^4 / M_w^4 < 10⁻⁵⁰
- Many New Physics models predict rates observable at next generation CLFV experiments
- No SM pollution : Observation is unambiguously New Physics

May 2018

New Physics Contributions to CLFV

A broad array of New Physics models contribute to CLFV

May 2018

CLFV Predictions

The different channels offer complementary sensitivity. Their comparison is a powerful model discriminant.

CLFV Predictions

The different channels offer complementary sensitivity. Their comparison is a powerful model discriminant.

CLFV Predictions

The different channels offer complementary sensitivity. Their comparison is a powerful model discriminant.

Using CLFV to Determine New Physics

Modol		$uN \rightarrow eN$	${ m BR}(\mu{ ightarrow}eee)$	$CR(\mu N \rightarrow eN)$
	$\mu \rightarrow eee$	μ iv \rightarrow erv	$BR(\mu \rightarrow e\gamma)$	${ m BR}(\mu ightarrow e \gamma)$
MSSM	Loop	Loop	$pprox 6 imes 10^{-3}$	$10^{-3} - 10^{-2}$
Type-I seesaw	Loop^*	Loop*	$3\times 10^{-3}-0.3$	0.1 - 10
Type-II seesaw	Tree	Loop	$(0.1-3) imes 10^3$	$\mathcal{O}(10^{-2})$
Type-III seesaw	Tree	Tree	$pprox 10^3$	${\cal O}(10^3)$
LFV Higgs	$\operatorname{Loop}^\dagger$	$\operatorname{Loop}^{*\dagger}$	$pprox 10^{-2}$	$\mathcal{O}(0.1)$
Composite Higgs	Loop^*	Loop^*	0.05-0.5	2 - 20

from L. Calibbi and G. Signorelli, Riv. Nuovo Cimento, 41 (2018) 71

TABLE VII. – Pattern of the relative predictions for the $\mu \rightarrow e$ processes as predicted in several models (see the text for details). It is indicated whether the dominant contributions to $\mu \rightarrow eee$ and $\mu \rightarrow e$ conversion are at the tree or at the loop level; Loop^{*} indicates that there are contributions that dominate over the dipole one, typically giving an enhancement compared to Eq. (40, 41). [†] A tree-level contribution to this process exists but it is subdominant.

The relative rates are model dependent

• Their ratios can be used to probe the underlying theory

May 2018

CLFV Sensitivity

A A = Discovery Sensitivity

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \bar{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP} \left(B o X_s \gamma \right)$	*	*	*	***	***	*	?
$A_{7,8}(B\to K^*\mu^+\mu^-)$	*	*	*	***	***	**	?
$A_9(B ightarrow K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B \to K^{(\star)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L ightarrow \pi^0 u ar{ u}$	*	*	*	*	*	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

W. Altmannshofer, A.J.Buras, S.Gori, P.Paradisi, D.M.Straub

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\star \star \star$ signals large effects, $\star \star$ visible but small effects and \star implies that the given model does not predict sizable effects in that observable.

CLFV Sensitivity

r = Discovery Sensitivity

d_n	***	***	***	**	***	*	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
$\tau \rightarrow \mu \gamma$	***	***	*	***	***	***	***
$\mu \rightarrow e \gamma$	***	***	***	***	***	***	***
$K_* \rightarrow \pi^0 \mu \bar{\nu}$	+	+	+	+	+	***	***
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*
$B \to K^{(\star)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$A_9(B ightarrow K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$A_{7,8}(B\to K^*\mu^+\mu^-)$	*	*	*	***	***	**	?
$A_{\rm CP}\left(B \to X_s \gamma\right)$	*	*	*	***	***	*	?
$S_{\phi K_S}$	***	**	*	***	***	*	?
$S_{\psi\phi}$	***	***	***	*	*	***	***
ϵ_K	*	***	***	*	*	**	***
$D^0 - \bar{D}^0$	***	*	*	*	*	***	?

W. Altmannshofer, A.J.Buras, S.Gori, P.Paradisi, D.M.Straub

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\star \star \star$ signals large effects, $\star \star$ visible but small effects and \star implies that the given model does not predict sizable effects in that observable.

The sensitivity of these experiments is exciting and compelling.

May 2018

All 3 experiments use the same basic principles

- High intensity, high purity μ source
- High μ stopping rate
- Detector to precisely measure particles consistent with having originated from stopping target

May 2018

NB. In these experiments, 100 MeV/c is "high momentum"

	P (MeV/c)	E (MeV)	KE (MeV)		
e :	100	100	100		
μ:	100	145	40		
π:	100	170	30		
D.Glenzinski Fermilab					

May 2018

CLFV Experiments using μ^- : Muon-to-Electron Conversion ($\mu^-N \rightarrow e^-N$)

Current State-of-the-art (@ 90% CL):

$$R_{\mu e} = \frac{\Gamma(\mu^{-} Au \rightarrow e^{-} Au)}{\Gamma(\mu^{-} Au \text{ capture})} < 7 \times 10^{-13}$$

W. Bertl, et al. (SINDRUM-II) Eur. Phys. J. C47 (2006) 337.

May 2018

Next generation experiments:

– DeeMee (J-PARC, 3 GeV)	x10	
– Mu2e (Fermilab)	x10,000	Expected improvement
– COMET (J-PARC, 8 GeV)		(relative to current state-of-the-art)
 Phase-I 	x10-100	
Phase-II	x10,000	

Mono-energetic electron $E_{\mu e} = m_{\mu} - B(A,Z) - R(A,Z) \sim 105 \text{ MeV}$

Coherent interaction with nucleus

Background

Decay in Orbit (DIO) ($\mu^-N \rightarrow e^-\nu\nu N$)

Radiative Pion Capture (RPC) $(\pi^- N \rightarrow \gamma N' \rightarrow e^- e^+ N')$

Cosmogenic

May 2018

Aside : muonic atoms

- Stopped μ⁻ is captured in atomic orbit –Quickly (~fs) cascades to 1s state
- Bohr radius ~20 fm (for aluminum)
 - –Significant overlap of $\mu^{\scriptscriptstyle \text{-}}$ and N wavefunctions
 - –Lifetime of the $\mu\text{-}atom$ ~few 100 ns for stopping targets of interest
- Once in orbit, 3 things can happen
 - -Decay : $\mu^- N(A,Z) \rightarrow e^- \nu \nu N(A,Z)$ (background)
 - -Capture : $\mu^- N(A,Z) \rightarrow \nu N^*(A, Z-1)$ (normalization)
 - -Conversion : $\mu^- N(A,Z) \rightarrow e^- N(A,Z)$ (signal)

May 2018

Aside : muonic atoms

- Stopped μ⁻ is captured in atomic orbit –Quickly (~fs) cascades to 1s state
- Bohr radius ~20 fm (for aluminum)
 - –Significant overlap of μ^{-} and N wavefunctions
 - –Lifetime of the $\mu\text{-}atom$ ~few 100 ns for stopping targets of interest
- Once in orbit, 3 things can happen
 - $-\text{Decay}: \mu^- N(A,Z) \rightarrow e^- \nu \nu N(A,Z) (39\%)$
 - -Capture : $\mu^- N(A,Z) \rightarrow \nu N^*(A, Z-1)$ (61%)

for an aluminum stopping target

Aside : muonic atoms

- Stopped μ⁻ is captured in atomic orbit –Quickly (~fs) cascades to 1s state
- Bohr radius ~20 fm (for aluminum)
 - –Significant overlap of μ^{-} and N wavefunctions
 - –Lifetime of the $\mu\text{-}atom$ ~few 100 ns for stopping targets of interest
- Once in orbit, 3 things can happen – Decay : $\mu^- N(A,Z) \rightarrow e^- v v N(A,Z)$ (39%)
 - -Capture : $\mu^- N(A,Z) \rightarrow \nu N^*(A, Z-1)$ (61%)

Produces 1n, 2γ, 0.1p per capture

for an aluminum stopping target

One Mu2e Event (500-1695 ns after proton pulse)

Timing information helps mitigate this

May 2018

Decay in Orbit Background for $(\mu^-N \rightarrow e^-N)$

- E_e follows the Michel spectrum... but with a long tail from nuclear recoil $E_{max} = E_{\mu e}$
 - Requires excellent σ_p (<200 keV/c) & FWHM < 1 MeV/c to suppress

May 2018

Radiative Pion Capture Background for $(\mu - N \rightarrow e - N)$

- Pions that survive to the stopping target are promptly captured on the nucleus
 - few% of the time, radiate γ with $E_{\gamma} \sim m_{\mu}$
 - Suppressed by 10⁹-10¹⁰ with pulsed proton beam and utilizing a delayed search window while maintaining a high efficiency for signal (~50%)

May 2018

Background

Decay in Orbit (DIO) $(\mu^-N \rightarrow e^-\nu\nu N)$

Radiative Pion Capture (RPC) $(\pi^- N \rightarrow \gamma N')$ Cosmogenic

Keys to success: excellent spectrometer resolution, pulsed proton beam, high efficiency cosmic veto

May 2018

Proton Beams for Mu2e and COMET

Proton Beams for Mu2e and COMET

May 2018

about 25 meters end-to-end

• Consists of 3 solenoid systems

Production Solenoid:

8 GeV protons interact with a tungsten target to produce μ - (from π - decay)

• Consists of 3 solenoid systems

May 2018

Transport Solenoid:

Captures π - and subsequent μ -; momentum- and sign-selects beam

• Consists of 3 solenoid systems

Detector Solenoid:

Upstream – Al. stopping target, Downstream – tracker, calorimeter (not shown – cosmic ray veto system, proton-beam monitor, stopped-muon monitor)

• Consists of 3 solenoid systems

May 2018

Graded fields important to suppress backgrounds, to increase muon yield, and to improve geometric acceptance for signal electrons

• Consists of 3 solenoid systems

May 2018

Graded fields important to suppress backgrounds, to increase muon yield, and to improve geometric acceptance for signal electrons

• Derived from MELC concept originated by Lobashev and Djilkibaev in 1989

May 2018
COMET-II Apparatus

 Also inspired by Lobashev and Djilkibaev

May 2018

COMET Evolution

Mu2e Expected Background Yield

(COMET Phase-II very similar)

Category	Source	Events
	μ Decay in Orbit	0.14
Intrinsic	Radiative μ Capture	<0.01
	Radiative π Capture	0.02
	Beam electrons	<0.01
	μ Decay in Flight	<0.01
Late Arriving Beam	π Decay in Flight	<0.01
	Anti-proton induced	0.04
Miscellaneous	Cosmic Ray induced	0.21
Total Background		0.41

(assuming 6.7E17 stopped muons in 6E7 s of beam time)

• Designed to be nearly background free

Detector development and prototypes

• Experiment designs finalized

Required performance demonstrated in test beams

Construction well underway (Phase-I COMET, Mu2e)

Commissioning begins 2020-2021

CLFV Experiments using μ^+ : Muon to e + gamma ($\mu^+ \rightarrow e^+ \gamma$) Muon to 3 electrons ($\mu^+ \rightarrow e^+ e^+ e^-$)

Muon to electron+gamma ($\mu^+ \rightarrow e^+ \gamma$)

Current State-of-the-art (@ 90% CL):

 $BF(\mu^+ \rightarrow e^+\gamma) < 4.2 \times 10^{-13}$

A. M. Baldini, et al. (MEG) Eur. Phys. J. C76, 8 (2016) 434.

May 2018

Muon to electron+gamma ($\mu^+ \rightarrow e^+ \gamma$)

Next generation experiments:

– MEG-II (PSI)

x10 Expected improvement (relative to current state-of-the-art)

MEG Experiment ($\mu^+ \rightarrow e^+ \gamma$)

Background

$\mu^+ \rightarrow e^+ \nu \nu \gamma$ Radiative Muon Decay (RMD)

Accidentals (ACC)

Back-to-back $e\gamma$ E_e = E_{γ} = m_{μ}/2

$$\mathsf{BF}_{\mathsf{ACC}} \propto \left(\frac{R_{\mu}}{D}\right) (\Delta t_{e\gamma}) \frac{\Delta E_e}{m_{\mu}/2} \left(\frac{\Delta E_{\gamma}}{15m_{\mu}/2}\right)^2 \left(\frac{\Delta \theta_{e\gamma}}{2}\right)^2$$

Keys to success: excellent energy, timing, angular resolutions, particularly ΔE_{γ} and $\Delta \theta_{e\gamma}$

May 2018

MEG Proton Beam

- 1.3 MW of 0.6 GeV protons
- DC muon beam using "surface" muons, p_{μ} ~ 28 MeV/c
- MEG uses few $10^7 \,\mu^+/s$

MEG Detector

- Liquid Xe calorimeter
 - PMT readout
 - 11% of solid angle
- Drift Chamber (DC)

- Radius : 19 - 28 cm

- Scintillator timing counters (TC)
- DC and TC inside graded solenoid field
- 205 μm polyethelene target

MEG Solenoid

Sweeps e+ out of central region

Bending radius independent of pitch angle

COBRA = COnstant Bending Radius

- 1.3 T in central region
- 0.5 T in outer regions

MEG Analysis

Utilizes 5 variables

• E_e, E_γ

•
$$t_{e\gamma} = t_e - t_{\gamma}$$

• φ_{eγ}

Blind Analysis Full Likelihood fit to data

• Published results uses full data set (2009-2013) -7.5×10^{14} stopped μ^+

May 2018

MEG Analysis

MEG Calibrations

	Process	Energy	Main Purpose	Frequency
Cosmic rays	μ^{\pm} from atmospheric showers	Wide spectrum O(GeV)	LXe-DCH relative position	annually
			DCH alignment	
			TC energy and time offset calibration	
			LXe purity	on demand
Charge exchange	$\pi^- \mathrm{p} o \pi^0 \mathrm{n} \ \pi^0 o \gamma \gamma$	55, 83, 129 MeV photons	LXe energy scale/resolution	annually
Radiative μ -decay	$\mu^+ ightarrow { m e}^+ \gamma u ar{ u}$	photons > 40 MeV,	LXe-TC relative timing	continuousl
		positrons > 45 MeV	Normalisation	
Normal μ -decay	$\mu^+ ightarrow { m e}^+ u ar{ u}$	52.83 MeV end-point positrons	DCH energy scale/resolution	continuousl
			DCH and target alignment	
			Normalisation	
Mott positrons	e^+ target $\rightarrow e^+$ target	≈ 50 MeV positrons	DCH energy scale/resolution	annually
-			DCH alignment	
Proton accelerator	$^{7}\text{Li}(p,\gamma)^{8}\text{Be}$	14.8, 17.6 MeV photons	LXe uniformity/purity	weekly
	11 B(p, γ) 12 C	4.4, 11.6, 16.1 MeV photons	TC interbar/ LXe-TC timing	weekly
Neutron generator	⁵⁸ Ni(n, <i>γ</i>) ⁵⁹ Ni	9 MeV photons	LXe energy scale	weekly
Radioactive source	$^{241}\mathrm{Am}(\alpha,\gamma)^{237}\mathrm{Np}$	5.5 MeV α 's, 56 keV photons	LXe PMT calibration/purity	weekly
Radioactive source	${}^{9}\text{Be}(\alpha_{241}\text{Am}, n){}^{12}\text{C}^{\star}$ ${}^{12}\text{C}^{\star}(\gamma){}^{12}\text{C}$	4.4 MeV photons	LXe energy scale	on demand
LED			LXe PMT calibration	continuousl

Table 1 The calibration tools of the MEG experiment.

Scale and resolutions determined with high degree of confidence

May 2018

MEG Final Result

May 2018

MEG-II Upgrade – another x10 better

PDF paramete	ers	MEG	MEG II
E_{e^+} (keV)		380	130
θ_{e^+} (mrad)		9.4	5.3
ϕ_{e^+} (mrad)		8.7	3.7
z_{e^+}/y_{e^+} (mm) co	ore	2.4/1.2	1.6/0.7
$E_{\gamma}(\%) \ (w > 2 \ {\rm cm})$	(w < 2 cm)	2.4/1.7	1.1/1.0
$u_{\gamma}, v_{\gamma}, w_{\gamma} \text{ (mm)}$		5/5/6	2.6/2.2/5
$t_{e^+\gamma}$ (ps)		122	84
Efficiency (%)			
Trigger		≈ 99	≈ 99
Photon		63	69
e^+ (tracking \times n	natching)	30	70

- Commissioning with beam has begun!
- Physics data taking will begin late 2018 – early 2019

Muon to three electrons ($\mu^+ \rightarrow e^+e^+e^-$)

Current State-of-the-art (@ 90% CL):

$BF(\mu^+ \rightarrow e^+e^-) < 1 \times 10^{-12}$

U. Bellgardt, et al. (SINDRUM) Nucl. Phys. B299 (1988) 1.

May 2018

Muon to three electrons ($\mu^+ \rightarrow e^+e^+e^-$)

Next generation experiments:

- Mu3e (PSI)
 - Phase la
 - Phase Ib
 - Phase II

x20 x400 (rela x10,000

Expected improvement (relative to current state-of-the-art)

May 2018

Mu3e Experiment ($\mu^+ \rightarrow e^+e^-$)

Signal

Background

$\mu^+ \rightarrow e^+ \nu \nu \gamma \rightarrow e^+ \nu \nu e^+ e^-$ Radiative Muon Decay (RMD)

Accidentals

Mu3e Experiment ($\mu^+ \rightarrow e^+e^+e^-$)

Background

$\mu^+ \rightarrow e^+ \nu \nu \gamma \rightarrow e^+ \nu \nu e^+ e^-$ Radiative Muon Decay (RMD)

Accidentals

• Keys to success: excellent momentum, timing, and vertex resolutions

Mu3e Experiment ($\mu^+ \rightarrow e^+e^+e^-$)

Mu3e (Phase-I) beam

- 1.3 MW of 0.6 GeV protons
- DC muon beam using "surface" muons, p_{μ} ~ 28 MeV/c
- Mu3e will use $10^7 10^8 \,\mu^+/s$
- Utilizes same beam line as MEG

Mu3e (Phase-II) beam

To achieve Phase-II sensitivity requires an upgraded facility at PSI: High Intensity Muon Beam

- Currently under development
- Not (yet) approved

May 2018

Mu3e Detector development (for Phase-Ib, II)

• Finalizing experiment design & prototyping. Aim to have Phase 1a detector ready for data taking by end of MEG-II running.

May 2018

Future Expectations

Expected data taking schedule

• Significant progress in all three μ channels in next 5-7 years

May 2018

Comparing sensitivities

Constraints from $\mu \rightarrow e$ Experiments

* S. Nussinov, R.D. Peccei, and X.M. Zhang, Phys. Rev. D63 (2001) 016003; (arXiv:0004153 [hep-ph]).

Constraints from $\mu \rightarrow e$ Experiments

Constraints on LFV Yukav	va couplings
$\frac{\text{From CLFV experiments}^*}{\mu \rightarrow e\gamma : B(h \rightarrow \mu e) < 10^{-8}}$ $\mu N \rightarrow eN : B(h \rightarrow \mu e) < 10^{-10}$	(today) (future)
Collider experiments LHC : $B(h \rightarrow \mu e) < 10^{-2} - 10^{-3}$	(today – future)

* R. Harnik, J. Kopp, and J. Zupan, JHEP 03 (2013) 026; (arXiv:1209.1397 [hep-ph]).

Examples of CLFV and LHC sensitivity

• CLFV experiments probe parts of NP parameter space LHC does not

May 2018

Constraints from $\tau \rightarrow e, \mu$ Experiments

- Results using CLFV τ decays correspond to B(h \rightarrow τe , $\tau \mu$) ~ 10%
 - CMS and ATLAS already exploring $B(h \rightarrow \tau \mu) \approx 1\%$

May 2018

Summary

- CLFV experiments provide deep, broad probes of New Physics parameter space
 - Will probe $\Lambda_{\rm NP}$ ~ O(10^3- 10^4) TeV >> LHC
- Near future experiments have compelling discovery sensitivity over a broad range of New Physics models (SUSY, GUT, ED, LHT, 2HDM,...)
- Combining information from >1 CLFV channel can allow a determination of underlying New Physics mechanism
- The next ~5 years promise to be very exciting for CLFV searches!

May 2018
For more information

• Useful reviews

- L. Calibbi and G. Signorelli, Riv. Nuovo Cimento, 41 (2018) 71
- T. Gorringe & D. Hertzog, Prog.Part.Nucl. Phys. 84 (2015) 73.
- S. Mihara, J.P. Miller, P. Paradisi, G. Piredda, Annu.Rev.Nucl.Part.Sci. 63 (2013) 552.
- R.H. Bernstein & P.S. Cooper, Phys. Rept. 532 (2013) 27.
- Y. Kuno & Y. Okada, Rev.Mod.Phys. 73 (2001) 151.

• About the experiments

- MEG: <u>http://meg.icepp.s.u-tokyo.ac.jp</u> (MEG-II TDR: arXiv:1801.04688)
- Mu2e: <u>http://mu2e.fnal.gov</u> (TDR: arXiv:1501.05241)
- COMET: <u>http://comet.kek.jp/Introduction.html</u> (Proposal: http://comet.kek.jp/Documents_files/Phase-I-Proposal-v1.2.pdf)
- DeeMee: <u>http://deeme.hep.sci.osaka-u.ac.jp</u> (Proposal: http://deeme.hep.sci.osaka-u.ac.jp/documents/deeme-proposal-r28.pdf/view)
- Mu3e: <u>https://www.psi.ch/mu3e/mu3e</u> (Proposal: https://www.psi.ch/mu3e/documents)

Backup Slides

Using CLFV to Determine New Physics

Can use ratio of rates to determine dominant operator contribution

- multiple ratios can determine multiple operators and the ratio of their couplings
- e.g. $(\mu \rightarrow e\gamma) / (\mu N \rightarrow eN)$
- e.g. $\mu N \rightarrow eN$ with different nuclei
- Also information in angular distributions

 $-\mu \rightarrow eee, \tau chnls$

D.Glenzinski | Fermilab

CLFV Sensitivity

W. Altmannshofer, A.J.Buras, S.Gori, P.Paradisi, D.M.Straub

~
<u> </u>
>
- 1
<u>.</u>
.0
~
<u> </u>
Ð
S
1.1
~
<u> </u>
(1)
~
~
0
U U
Ś
·=
_
- 11
11
1
-

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \bar{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP}\left(B \to X_s \gamma\right)$	*	*	*	***	***	*	?
$A_{7,8}(B ightarrow K^*\mu^+\mu^-)$	*	*	*	***	***	**	?
$A_9(B ightarrow K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B \to K^{(\star)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s ightarrow \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L ightarrow \pi^0 u ar u$	*	*	*	*	*	***	***
$\mu \rightarrow e \gamma$	***	***	***	***	***	***	***
$\tau \rightarrow \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

AC	U(1) flavor symmetry
RVV2	Non-abelian SU(3)- flavored MSSM
AKM	SU(3)-flavored SUSY
δμ	LH CKM-like currents
FBMSSM	Flavor-blind MSSM
LHT	Little Higgs w/T parity
RS	Randall-Sundrum

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\bigstar \bigstar \bigstar$ signals large effects, $\bigstar \bigstar$ visible but small effects and \bigstar implies that the given model does not predict sizable effects in that observable.

MEG Calibration

- E_e calibrated using Michel edge
- E_{γ} calibrated during special runs using a liquid hydrogen target
 - $-\pi^{-}p \rightarrow \pi^{0} n \rightarrow \gamma\gamma n$ (pion charge exchange)
 - Tag opposite side γ using a small movable BGO array dedicated to this calibration
 - The angle and energy of the opposite side tag can be used to define a monoenergetic source of γ in the LXe (~55 MeV)

MEG Calibration

- Photon energy scale determined to <1% using special runs with a pion beam, a custom target, and exploiting charge exchange processes to identify monoenergetic photons with energies ~55 MeV
- Monitor stability of Eγ with short special runs that use a <1 MeV proton beam and a Li₂B₄O₇ target to produce photons at 18, 12, & 4 MeV

MEG Calibration

• Relative $e-\gamma$ timing calibrated using radiative muon decays

May 2018

MEG Backgrounds

• Accidental backgrounds dominate.

MEG Accidental Background

- Both curves are steeply falling in region of interest... sensitivity strong function of σ_{E}

MEG-II Upgrade : aim for x10 improvement

• Expect to begin 3y data taking in 2019 —Aim to improve sensitivity by x10

Mu3e acceptance

- Inner bore of detector solenoid large enough to fully contain tracks with momenta up to ~50 MeV/c
- Central pixels fully fiducial for track momenta down to ~12 MeV/c
- Forward pixels provide additional hits from "recurl"

May 2018

DeeMee (μ -N \rightarrow e-N)

Signal Region: 102.0 -- 105.6 MeV/c

- New concept at JPARC – 3 GeV from RCS H-Line
- Use thick target as production, decay, and stopping volumes (graphite, SiC)
- Customize beam line to select momentum bite near $E_{\mu e} \sim m_{\mu}$ so that you're sensitive to $\mu N \rightarrow eN$ that occurs near the target surface
- Goal: R_{μe} < 2 x 10⁻¹⁴ @ 90%CL
 - 2-3y of running at 1 MW
 - Currently operating at ~400 kW

COMET Phase I & II

28

Summary of COMET phase-I/II

	COMET-Phase-I	COMET-Phase-II
experiment starts (*)	2020	~2022
beam intensity	3.2kW (8GeV)	56kW (8GeV)
running time	1.5 x 10 ⁶ (sec)	2.0 x 10 ⁷ (sec)
# of protons	3.8×10^{18}	8.5×10^{20}
# of muon stops	8.7 × 10 ¹⁵	2.0×10^{18}
muon rate	5.8×10^{9}	1.0×10^{11}
# of muon stops / proton	0.0023	0.0023
# of BG	0.03	0.3
S.E.S.	3.1 x 10 ⁻¹⁵	2.6 x 10 ⁻¹⁷
U.L. (90%CL.)	7.0 × 10 ⁻¹⁵	6.0 × 10 ⁻¹⁷

(*) Engineering runs and Physics runs

H.Nishiguchi(KEK)

Project of Muon LFV at J-PARC

Tau2012, Nagoya

• Will employ straw technology

- Low mass
- Can reliably operate in vacuum
- Robust against single-wire failures

- 5 mm diameter straw
- Spiral wound
- Walls: 12 μm Mylar + 3 μm epoxy + 200 Å Au + 500 Å Al
- \bullet 25 μm Au-plated W sense wire
- 33 117 cm in length
- 80/20 Ar/CO2 with HV < 1500 V

May 2018

- Self-supporting "panel" consists of 100 straws
- 6 panels assembled to make a "plane"
- 2 planes assembled to make a "station"
- Rotation of panels and planes improves stereo information
- >20k straws total

- 18 "stations" with straws transverse to the beam
- Naturally moves readout and support to large radii, out of the active volume

- Inner 38 cm is purposefully un-instrumented
 - Blind to beam flash
 - Blind to >99% of DIO spectrum

Mu2e Spectrometer Performance

• Performance well within physics requirements

May 2018

Mu2e Track Reconstruction and Selection

Mu2e Performance

• Robust against increases in rate

Mu2e Calorimeter

- Baseline design : Cesium Iodide (CsI)
 - Radiation hard, fast, compact

	Csl
Density (g/cm3)	4.51
Radiation length (cm)	1.86
Moliere Radius (cm)	3.57
Interaction length (cm)	39.3
dE/dX (MeV/cm)	5.56
Refractive index	1.95
Peak luminescence (nm)	310
Decay time (ns)	26
Light yield (rel. to Nal)	3.6%
Variation with temperature	-1.4% / deg-C

Mu2e Calorimeter

May 2018

Mu2e Calorimeter

- With 60 ns integration, expect to achieve an energy resolution ~5% for 105 MeV electrons
 - Performance a weak function of rate in relevant range

May 2018

Mu2e Cosmic-Ray Veto

- Cosmic μ can generate background events via decay, scattering, or material interactions

Mu2e Cosmic-Ray Veto

• Veto system covers entire DS and half TS

Mu2e Cosmic-Ray Veto

- Will use 4 overlapping layers of scintillator
 - Each bar is $5 \times 2 \times 450 \text{ cm}^3$
 - 2 WLS fibers / bar
 - Read-out both ends of each fiber with SiPM
 - Have achieved ε > 99.4% (per layer) in test beam

Cosmic Ray Veto

• Test beam data to vet design/performance

Mu2e Selection Requirements

Parameter	Requirement		
Track quality and backgrou	and rejection criteria		
alman Fit Status Successful Fit			
Number of active hits	$N_{active} \ge 25$		
Fit consistency	χ^2 consistency > 2x10 ⁻³		
Estimated reconstructed momentum uncertainty	$\sigma_p < 250 \text{ keV/c}$		
Estimated track t ₀ uncertainty	$\sigma_t < 0.9$ nsec		
Γrack t ₀ (livegate)	700 ns $< t_0 < 1695$ ns		
Polar angle range (pitch)	$45^{\circ} < \theta < 60^{\circ}$		
Ainimum track transverse radius	$-80 \text{ mm} < d_0 < 105 \text{ mm}$		
Aaximum track transverse radius	$450 \text{ mm} < d_0 + 2/\omega < 680 \text{ mm}$		
rack momentum	103.75 < p < 105.0 MeV/c		
Calorimeter matching and partic	cle identification criteria		
rack match to a calorimeter cluster	$E_{cluster} > 10 \text{ MeV}$		
	χ^2 (track-calo match) < 100		
latio of cluster energy to track momentum	E/P < 1.15		
Difference in track t_0 to calorimeter t_0	$\Delta t = t_{track} - t_{calo} < 3$ ns from peak		
Particle identification	$\log(L(e)/L(\mu)) < 1.5$		

Full set of selection criteria employed to estimate backgrounds and sensitivity reported in TDR (Summer 2014)

Mu2e Systematic Uncertainties

Effect	Uncertainty in DIO background yield	Uncertainty in CE single- event-sensitivity (×10 ⁻¹⁷)
MC Statistics	±0.02	±0.07
Theoretical Uncertainty	±0.04	-
Tracker Acceptance	±0.002	±0.03
Reconstruction Efficiency	±0.01	±0.15
Momentum Scale	+0.09, -0.06	±0.07
µ-bunch Intensity Variation	±0.007	±0.1
Beam Flash Uncertainty	±0.011	±0.17
µ-capture Proton Uncertainty	±0.01	±0.016
µ-capture Neutron Uncertainty	±0.006	±0.093
µ-capture Photon Uncertainty	±0.002	±0.028
Out-Of-Target µ Stops	±0.004	±0.055
Degraded Tracker	-0.013	+0.191
Total (in quadrature)	+0.10, -0.08	+0.35, -0.29

• Evaluated for all background sources

Mu2e Tracker Occupancy

Reco Hit Time by Generator Particle

- Accidental occupancy from beam flash, μ capture products, out-of-target μ stops, etc.

May 2018

Mu2e Signal Momentum Spectrum

 Smearing dominated by interactions in stopping target and in (neutron/proton) absorbers upstream of tracker

May 2018

- We need to understand contributions from accidentals and correlated-accidentals
 - For neutrons and photons as a function of time, energy, timing resolution, and read-out threshold

Muon momentum distribution

• The muons that stop are low momentum

Improving the Previous Experiment

- Current world's best limit on $\mu N \rightarrow eN$ is from SINDRUM-II:
 - W. Bertl, et al. (SINDRUM II Collaboration), Euro. Phys. C47 (2006) 337.
 - $-R_{\mu e}(\mu N_{Au} \rightarrow eN_{Au}) < 7 \times 10^{-13} @ 90\% CL (2006)$
 - Limited by
 - Backgrounds from prompt pions
 - Stopped- μ rate (~10⁷ μ /s using ~1 MW beam)
- Any improvement to SINDRUM-II needs to address these limitations

Improving the Previous Experiment

- In 1989 Lobashev and Djilkabaev published a paper proposing an experiment that solved these two problems by
 - 1. Utilizing a pulsed proton beam
 - 2. Employing solenoids to collect muons
- Mu2e is the realization of their proposed technique
 - Pulsed beam from the Fermilab accelerator complex
 - Solenoid system capable of delivering high intensity stopped-muon beam
Using Solenoids to Collect Muons

Fermilab's Muon Campus

- New facilities to host muon experiments
 - Two new experimental halls and the associated beam lines
 - Will produce the world's highest intensity muon beams
 - Physics data taking has begun for Muon (g-2) experiment

May 2018

Mu2e Solenoid Summary

	PS	TS	DS
Length (m)	4	13	11
Diameter (m)	1.7	0.4	1.9
Field @ start (T)	4.6	2.5	2.0
Field @ end (T)	2.5	2.0	1.0
Number of coils	3	52	11
Conductor (km)	14	44	17
Operating current (kA)	10	3	6
Stored energy (MJ)	80	20	30
Cold mass (tons)	11	26	8

- PS, DS is being built by General Atomics
 - TS is being built by ASG + Fermilab

May 2018

Mu2e Schedule

- Full scale solenoid construction has started
- Full scale detector construction ramping-up in 2018
- Solenoid and detector installation in 2019-2020
- Initial commissioning in 2021
- First physics running in 2022
- At full intensity
 - Reach Sindrum-II sensitivity in 100 min
 - x10 in 17 hours running
 - x100 in 7 days running
 - x10000 in 700 days running

Mu2e Collaboration

Spokespersons: Jim Miller (Boston), DG (Fermilab)

Over 200 Scientists from 37 Institutions

Argonne National Laboratory, Boston University, University of California Berkeley, University of California Davis, University of California Irvine, California Institute of Technology, City University of New York, Joint Institute of Nuclear Research Dubna, Duke University, Fermi National Accelerator Laboratory, Laboratori Nazionale di Frascati, University of Houston, Helmholtz-Zentrum Dresden-Rossendorf. INFN Genova, Institute for High Energy Physics, Protvino, Kansas State University, Lawrence Berkeley National Laboratory, INFN Lecce, University Marconi Rome, Lewis University, University of Liverpool, University College London, University of Louisville, University of Manchester, University of Minnesota, Muon Inc., Northwestern University, Institute for Nuclear Research Moscow, INFN Pisa, Northern Illinois University, Purdue University, Rice University, Sun Yat-Sen University, University of South Alabama, Novosibirsk State University/Budker Institute of Nuclear Physics, University of Virginia, University of Washington, Yale University

May 2018

$h \rightarrow \tau$ constraints from $\mu \rightarrow e$ CLFV

 τ μ-τe couplings can contribute to μ \rightarrow e transitions. As an example:

- $\mu \rightarrow e\gamma$ constrains dipole contributions
- μ -N \rightarrow e-N constrains vector contributions
- Future improvements in μ -N \rightarrow e-N will probe B(h $\rightarrow \tau\mu$)B(h $\rightarrow \tau e$) < 10⁻⁷

cf. I.Dorsner, S. Fajfer, A. Greljo, J. Kamenik, N, Kosnik, I. Nisandzic, JHEP 1506 (2015) 108; (1502.07784). R. Harnik, J. Kopp, J. Supan (1209.1397).

May 2018

Direct Searches for CLFV h decays

<u>CMS</u> B(h $\rightarrow \tau\mu$) < 1.51 x 10⁻² Best fit : (0.84 +/- 0.40)%

<u>ATLAS</u> B(h $\rightarrow \tau\mu$) < 1.43 x 10⁻² Best fit : (0.53 +/- 0.51)%

• Looking forward to the updated analysis...

NP Contributions to CLFV

• As has been discussed, LFV higgs couplings will contribute

CLFV using taus

cLFV Experiments using taus

Sensitivity dominated by Belle & BaBar

cLFV Experiments using taus

E>	Physics process	Cross section (nb)
	$\Upsilon(4S) \to B\bar{B}$	1.2
	$e^+e^- \rightarrow {\rm continuum}$	2.8
	$\mu^+\mu^-$	0.8
	$\tau^+ \tau^-$	0.8
	Bhabha ($\theta_{\rm lab} \ge 17^{\circ}$)	44
	$\gamma\gamma~(\theta_{\rm lab} \ge 17^\circ)$	2.4
	2γ processes b	~ 80
	Total	~ 130

$\tau^+\tau^-$ production cross section ~ 1 nb Latest results use 500-800 fb⁻¹ ~ 500-800M $\tau^+\tau^-$ pairs

cLFV Experiments using taus

- Exploit (E,p) constraints available at e⁺e⁻ collider
- On Search side: $m_{reco} = m_{\tau}$, $E_{reco} = E_{beam}$ (in CM)
- Employ excellent particle identification algorithms
- Additional requirements to suppress qq, $\mu\mu$, ee, $\gamma\gamma$

May 2018

Some cLFV Results

• $\tau \rightarrow e\gamma$, $\mu\gamma$ already observe background

May 2018

Some cLFV Results

Ellipse = Signal Region Solid lines : m_{reco} sidebands

- $\tau \rightarrow 3$ leptons very clean
- No events in signal region

cLFV tau decays at LHCb

- Lots of τ from b $\rightarrow \tau v X$ and c $\rightarrow \tau v X$
- Effective cross section of 85 μb
- Competitive $\tau \rightarrow \mu \mu \mu$ sensitivity

cLFV Result

• Normalized to $D_s \rightarrow \phi \pi \rightarrow (\mu \mu) \pi$

Most Recent HFAG Results

Future Sensitivity

LHCb $\tau \rightarrow \mu \mu \mu$ Results

	7 TeV	8 TeV	
$\mathcal{B}\left(D^s\to\phi\left(\mu^+\mu^-\right)\pi^-\right)$	$(1.32 \pm 0.10) \times 10^{-5}$		
$\mathcal{B}\left(D_s^- \to \tau^- \bar{\nu}_\tau\right)$	$(5.61 \pm 0.24) \times 10^{-2}$		
$f_{ au}^{D_s}$	0.78 ± 0.04	0.80 ± 0.03	
$\epsilon_{ m cal}{}^{ m R}/\epsilon_{ m sig}{}^{ m R}$	0.898 ± 0.060	0.912 ± 0.054	
${\epsilon_{\mathrm{cal}}}^{\mathrm{T}}/{\epsilon_{\mathrm{sig}}}^{\mathrm{T}}$	0.659 ± 0.006	0.525 ± 0.040	
$N_{ m cal}$	28200 ± 440	52130 ± 700	
lpha	$(7.20 \pm 0.98) \times 10^{-5}$	$^{-9}$ (3.37 ± 0.50) × 10 ⁻⁹	

Table 1: Terms entering into the normalisation factors, α , and their combined statistical and systematic uncertainties.

$$\mathcal{B}\left(\tau^{-} \to \mu^{-} \mu^{+} \mu^{-}\right) = \frac{\mathcal{B}\left(D_{s}^{-} \to \phi\left(\mu^{+} \mu^{-}\right) \pi^{-}\right)}{\mathcal{B}\left(D_{s}^{-} \to \tau^{-} \bar{\nu}_{\tau}\right)} \times f_{\tau}^{D_{s}} \times \frac{\epsilon_{\mathrm{cal}}^{\mathrm{R}}}{\epsilon_{\mathrm{sig}}^{\mathrm{R}}} \times \frac{\epsilon_{\mathrm{cal}}^{\mathrm{T}}}{\epsilon_{\mathrm{sig}}^{\mathrm{T}}} \times \frac{N_{\mathrm{sig}}}{N_{\mathrm{cal}}} \equiv \alpha N_{\mathrm{sig}},$$

May 2018

	$\mathcal{M}_{\mathrm{PID}}$ response	\mathcal{M}_{3body} response	Expected	Observed
		0.26 - 0.34	39.6 ± 2.3	39
		0.34 - 0.45	32.2 ± 2.1	34
		0.45 - 0.61	28.7 ± 2.0	28
	0.40 - 0.54	0.61 - 0.70	9.7 ± 1.2	5
		0.70 - 0.83	11.4 ± 1.3	7
		0.83 - 0.94	7.3 ± 1.1	6
		0.94 - 1.00	6.0 ± 1.0	0
		0.26 - 0.34	13.6 ± 1.4	8
		0.34 - 0.45	12.1 ± 1.3	12
		0.45 - 0.61	8.3 ± 1.0	13
	0.54 - 0.61	0.61 - 0.70	2.60 ± 0.62	1
		0.70 - 0.83	1.83 ± 0.60	5
		0.83 - 0.94	2.93 ± 0.72	6
		0.94 - 1.00	2.69 ± 0.63	3
		0.26 - 0.34	13.5 ± 1.4	7
		0.34 - 0.45	10.9 ± 1.2	11
		0.45 - 0.61	9.7 ± 1.2	12
	0.61 - 0.71	0.61 - 0.70	3.35 ± 0.69	2
		0.70 - 0.83	4.60 ± 0.89	5
		0.83 - 0.94	4.09 ± 0.81	4
		0.94 - 1.00	2.78 ± 0.68	1
		0.26 - 0.34	7.8 ± 1.1	6
		0.34 - 0.45	7.00 ± 0.99	8
		0.45 - 0.61	6.17 ± 0.95	6
	0.71 - 0.80	0.61 - 0.70	1.57 ± 0.56	2
		0.70 - 0.83	2.99 ± 0.72	0
		0.83 - 0.94	3.93 ± 0.81	0
		0.94 - 1.00	3.22 ± 0.68	1
		0.26 - 0.34	5.12 ± 0.86	3
		0.34 - 0.45	4.44 ± 0.79	6
		0.45 - 0.61	3.80 ± 0.78	5
	0.80 - 1.00	0.61 - 0.70	2.65 ± 0.68	2
		0.70 - 0.83	3.05 ± 0.67	2
	0.83 - 0.94	1.74 ± 0.54	2	
		0.94 - 1.00	3.36 ± 0.70	3

Table 3: Expected background candidate yields in the 8 TeV data set, with their uncertainties, and observed candidate yields within the τ^- signal window in the different bins of classifier response. The classifier responses range from 0 (most background-like) to +1 (most signal-like). The first bin in each classifier response is excluded from the analysis.

LHCb $\tau \rightarrow \mu \mu \mu$ Results (2fb⁻¹ @ 8TeV)

Data are consistent with Background expectations

Table 2: Expected background candidate yields in the 7 TeV data set, with their uncertainties, and observed candidate yields within the τ^- signal window in the different bins of classifier response. The classifier responses range from 0 (most background-like) to +1 (most signal-like). HCb $\tau \rightarrow \mu \mu \mu$ The first bin in each classifier response is excluded from the analysis.

$\mathcal{M}_{\mathrm{PID}}$ response	$\mathcal{M}_{3\mathrm{body}}$ response	Expected	Observed
	0.28 - 0.32	3.17 ± 0.66	4
	0.32 - 0.46	9.2 ± 1.1	6
0.40 - 0.45	0.46 - 0.54	2.89 ± 0.63	6
	0.54 - 0.65	3.17 ± 0.66	4
	0.65 - 0.80	3.64 ± 0.72	2
	0.80 - 1.00	3.79 ± 0.80	3
	0.28 - 0.32	4.22 ± 0.78	6
	0.32 - 0.46	8.3 ± 1.1	10
0.45 - 0.54	0.46 - 0.54	2.3 ± 0.57	4
	0.54 - 0.65	2.83 ± 0.63	8
	0.65 - 0.80	2.72 ± 0.69	5
	0.80 - 1.00	4.83 ± 0.90	7
	0.28 - 0.32	2.33 ± 0.58	6
	0.32 - 0.46	8.3 ± 1.1	8
0.54 - 0.63	0.46 - 0.54	2.07 ± 0.53	1
	0.54 - 0.65	3.29 ± 0.68	1
	0.65 - 0.80	2.96 ± 0.65	4
	0.80 - 1.00	3.11 ± 0.69	3
	0.28 - 0.32	2.69 ± 0.62	1
	0.32 - 0.46	7.5 ± 1.0	5
0.63-0.75	0.46 - 0.54	2.06 ± 0.53	3
	0.54 - 0.65	2.00 ± 0.55	5
	0.65 - 0.80	3.16 ± 0.66	2
	0.80 - 1.00	4.67 ± 0.84	2
	0.28 - 0.32	2.19 ± 0.55	2
	0.32 - 0.46	3.38 ± 0.76	5
0.75 - 1.00	0.46 - 0.54	1.52 ± 0.46	3
	0.54 - 0.65	1.28 ± 0.47	1
	0.65 - 0.80	2.78 ± 0.65	1
	0.80 - 1.00	4.42 ± 0.83	7

Results (1fb⁻¹ @ 7TeV)

Data are consistent with Background expectations