B PROPERTIES, LIFETIMES, AND B. DECAYS AT LHCb

MIRCO DORIGO (CERN and INFN-IS) on behalf of the LHCb collaboration

BEAUTY 2018 - LA BIODOLA, MAY 6-12 2018

CONTRANTS

B properties: focus on Bs lifetime.

For other recent results on b hadron properties (baryons) see Sheldon Stone's talk on Monday.

- Bc decays: two recent searches
- Using data from LCHb. Ideal for
 - lifetime measurement (large boost, precise FD and p measurements)
 - B_c searches (large b production, all b hadron species)

JIPX~20µm

Op/p~0.5-0.8% PID $\varepsilon_{\rm K} = 95\%$, $\varepsilon_{\mu} = 98\%$, misid x = 5%misid_{$K \rightarrow \mu$} = 0.6%, misid = 0.3%

- Supporting measurements to sharpen our theoretical tools and to build confidence on experimental methods
- Test the heavy-quark expansion model: the best predictive tool for inclusive quantities in the dynamics of heavy mesons.
- $\tau(B_s^0)/\tau(B^0)$ has key discriminating power as corrections nearly vanish.
- Data value 0.990 ± 0.004 agree well with the 0.9994 ± 0.0025 prediction [JHEP 12] (2017) 068]. Want to improve data precision.

TITIS

SHATLEPTONTC

- Semileptonic (SL) decays $B_s^0 \to D_s^- \mu^+ X \nu_\mu$ provide huge sample.
- SL decays give access to the flavour-specific lifetime.

$$\tau_s^{\rm fs} = \frac{1}{\Gamma_s} \left[\frac{1 + (\Delta \Gamma_s / 2\Gamma_s)^2}{1 - (\Delta \Gamma_s / 2\Gamma_s)^2} \right]$$

- Challenging.
 - **Biased decay-time** determination from the observed decay length.
 - signals within the inclusive final state.

Reminder: with nonzero width-difference " B_s lifetime" is not uniquely defined.

Broad B mass, spoiling separation from background and between the various

NOVEL METHOD

- $\mathbf{\tau_s^{fs}}$ from change in B_s^0 yield vs decay time, relative to the yield of B⁰ decays reconstructed in the same final state. $B_{(s)}^0 \to D_{(s)}^- \mu^+ X \nu_\mu$
- Name of the game: **minimize B**_s⁰-to-B⁰ differences of the selection efficiency vs the decay-time.
- Extract $\Delta = 1/\tau_s fs 1/\tau_{BO}$. Precise value of $\mathbf{\tau}_{BO}$ as input.

 D_s or D

B_s^0 or B^0 .

V:

SAUPHH (COMPOSILICON

B° sample serves also as validation:

CORRECTING THE DATA

- 1. Unreconstructed ν momentum biases the decay-time determination. Correct observed momentum for average missing momentum as determined in simulation:
 - $k = p(D\mu)/p(B)$ [fermilab-thesis-2006-18]
- 2. Want uniform signal-to-reference efficiency ratio as a function of decay time. Known 2x difference between D_s⁻ and D⁻ lifetime introduces about 20% non uniformities. Equalise the D decay time distributions.

 $\tau_{s}^{fs} = 1.547 \pm 0.013 \pm 0.010 \pm 0.004 (\tau_{f})$

15% better than world's best. Halved the systematic of previous-best SL result.

b	 Agree with and improve previou determinations.
	 Precision limited by the size of the reference sample. Ample chances for improvement with new data.
[ps]	 Systematic dominated by the modelling in simulation of the signal.
$_{B^0}) \mathrm{ps}$	 Method notential extends well

beyond lifetimes. Method is suitable for other experiments too.

Contours of $\Delta(\log \mathcal{L}) = 0.5$

(SOME) LHCD LIFETIMES

 $B_s^0 \rightarrow D\mu X [PRL 119 (2017) 101801]$ $B_s^0 \rightarrow D_s \pi [PRL 113 (2014) 172001]$

 $B_s^0 \rightarrow J/\psi f_0$ [PRL 109 (2012) 152002]

 $B_s^0 \rightarrow J/\psi \phi$ [PRL 114 (2015) 041801] $B_s^0 \rightarrow J/\psi KK [JHEP 08 (2017) 037]$ $B_{s}^{0} \rightarrow \psi(2S)\phi$ [PLB 762 (2016) 253] See Greig Cowan's talk on Monday

B_s⁰→J/ψη [PLB 762C (2016) 484] $B_s^0 \rightarrow D_s D_s$ [PRL 112 (2014) 111802]

- Fit of composition in D decay time bin and then fit the resulting signal-to-reference yield ratio.
- Use precise D⁻lifetime as input to obtain the D_s^- lifetime.
- Include a 4% relative acceptance correction and 110 fs decay-time resolution
- Agreement with world's average.

 $\tau_{D_s} = 0.5064 \pm 0.0030 \pm 0.0017 \pm 0.0017 (\tau_D) \,\mathrm{ps}$ Improved by factor of 2 the precision of the world's best result

ONTTHE BCSECTOR

- B_c first observation by CDF in '98 [PRL 81, 2432]. Least studied of all B mesons. Only 16 decay modes established so far.
- Small production, about O(0.1%) of all b hadrons. Yet, several results from LHCb:
 - ✓ Mass, PRL 109, 232001 (2012).
 - ✓ Lifetime, PLB 742 (2015) 29-37; EPJ C74 (2014) 2839.
 - ✓ New decays: PRD 95, 032005 (2017); PRL 118, 111803 (2017); PRD 94, 091102 JHEP 1311 (2013) 094; PRL 111, 181801 (2013); JHEP09(2013)075; PRD 87, 11 (2013) 112012; PRD 87, 071103 (2013); PRL 108, 251802 (2012).
- Will focus on two recent searches of B_c and $B_c(2S)$ decays.

(2016); PLB 759, 313 (2016); PRL 113, 152003 (2014); JHEP 1405 (2014) 148;

DECAYS INTO DD MESONS

- CP violation not observed yet in B_c^+ decays. $B_c^+ \rightarrow D^{(*)+}D^{(*)}$ decays, where D is $D_{(s)}^0$ or $\overline{D_0}$, proposed to measure γ [PRD 62, 057503; PRD 65, 034016].
- Ratio of interfering suppressed and favoured amplitudes expected to be about 1. Enhanced CP asymmetries w.r.t. $B^+ \rightarrow DK$ decays.
- Attempt a first observation. Expectation of BRs are around 10⁻⁶ for most modes.

Channel	Prediction for	• the br	anching	fraction
$B_c^+ \to D_s^+ \overline{D}{}^0$	2.3 ± 0.5	4.8	1.7	2.1
$B_c^+ \rightarrow D_s^+ D^0$	3.0 ± 0.5	6.6	2.5	7.4
$B_c^+ \to D^+ \overline{D}{}^0$	32 ± 7	53	32	33
$B_c^+ \rightarrow D^+ D^0$	0.10 ± 0.02	0.32	0.11	0.3

[PRD 86 (2012) 074019; arXiv:hep-ph/0211021; PLB 555 (2003),189; PRD 73 (2006), 054024]

DECAYS INTO DD MESONS¹⁴

- Use 3 fb⁻¹ of data collected at 7 and 8 TeV.
- Reconstruct $D_s^+ \rightarrow K^+K^-\pi^+$, $D^+ \rightarrow K^-\pi^+\pi^+$ and $D^0 \rightarrow K^-\pi^+$, $K^-\pi^+\pi^-\pi^+$.
- Normalise to the B⁺ modes: $34K D_s \overline{D^0}$, $0.5K D_s D^0$, $1.9K D^+ \overline{D^0}$, $40 D^+ D^0$

[arXiv:1712.04702]

DBCAYS INTO DD MBSONS¹⁵

No signal found, extract limits at 90% [95%] CL.

 $\frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to D_s^+ D^0)}{\mathcal{B}(B^+ \to D_s^+ \overline{D}^0)} = (-3.0 \pm 3.7) \times 10^{-4} \ [< 0.9 \ (1.1) \times 10^{-3}]$ $\frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to D_s^+ D^0)}{\mathcal{B}(B^+ \to D_s^+ \overline{D}^0)} = (-3.8 \pm 2.6) \times 10^{-4} \left[< 3.7 \, (4.7) \times 10^{-4} \right]$ $\frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to D^+ \overline{D}^0)}{\mathcal{B}(B^+ \to D^+ \overline{D}^0)} = (8.0 \pm 7.5) \times 10^{-3} [< 1.9 (2.2) \times 10^{-2}]$ $\frac{f_c}{f_u} \frac{\mathcal{B}(B^+ \to D^+ D^0)}{\mathcal{B}(B^+ \to D^+ \overline{D}^0)} = (2.9 \pm 5.3) \times 10^{-3} \left[< 1.2 \, (1.4) \times 10^{-2} \right]$

Upper limits also for combination of decays into a $D_s D^{0*}$ and $D_s^* D^0$ final states.

Assuming f_c/f_u about 1%, extract limits on the B_c^+ decays BRs: far above the predictions – e.g. $BR(B_c^+ \rightarrow D^+D^0) < 6.0 \times 10^{-4}$ at 90% CL.

[arXiv:1712.04702]

$$\frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to D_s^{*+}\overline{D}^{*0})}{\mathcal{B}(B^+ \to D_s^{*+}\overline{D}^{*0})} = (3.2 \pm 4.3) \times 10^{-3} [< 1.1 (1.3) \times 10^{-3}]$$

$$\frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to D_s^{*+}D^{*0})}{\mathcal{B}(B^+ \to D_s^{+}\overline{D}^{*0})} = (7.0 \pm 9.2) \times 10^{-3} [< 2.0 (2.4) \times 10^{-3}]$$

$$\frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to D^{*+}\overline{D}^{*0})}{\mathcal{B}(B^+ \to D^{+}\overline{D}^{*0})} = (3.4 \pm 2.3) \times 10^{-1} [< 6.5 (7.3) \times 10^{-3}]$$

$$\frac{f_c}{f_u} \frac{\mathcal{B}(B_c^+ \to D^{*+}\overline{D}^{*0})}{\mathcal{B}(B^+ \to D^{+}\overline{D}^{*0})} = (-4.1 \pm 9.1) \times 10^{-2} [< 1.3 (1.6) \times 10^{-3}]$$

SEARCH FOR EXCITED B.

- A rich mass spectrum predicted by various QCD potential models and Lattice QCD.
- States below BD threshold can only undergo radiative or hadronic transitions to the ground state B_c^+ which decays weakly.

Use 2 fb^{-1} collected at 8 TeV. Reconstruct about 3300 $B_c^+ \rightarrow J/\psi \pi^+$ decays, selected with a BDT exploiting vertex displacement and kinematics of daughter particles.

[JHEP 01 (2018) 138]

Attach $\pi^+\pi^-$ pairs to form the excited state candidates. Categorise them with a MLP exploring angles between B_c and $B_c(2S)$ candidates. No signal found.

- Put limits on $\mathcal{R} = \frac{\sigma_{B_c^{(*)}(2S)^+}}{\sigma_{B_c^+}} \cdot \mathcal{B}(B_c^{(*)}(2S)^+ \to B_c^{(*)+}\pi^+\pi^-)$
 - and compared with the ATLAS measurement.

$$\sqrt{s} = 7 \,\mathrm{TeV}$$

ATLAS $(0.22 \pm 0.08 \text{ (stat)})$

LHCb

- $\varepsilon_{7,8}$ is the efficiency to reconstruct $B_c(2S)^+$ w.r.t. the B_c^+ signals. It's ≤ 1 , but much larger than that of LHCb.
- LHCb upper limits at 95% CL in the vicinity of the ATLAS peak at \sim 6842 MeV/c.
- The LHCb and ATLAS measurements are compatible in case of large values of $\varepsilon_{7,8}$.

$$\sqrt{s} = 8 \text{ TeV}$$

$$(0.15 \pm 0.06 \text{ (stat)}) \varepsilon_8 \text{ [PRL 113 (2014) 12004]}$$

$$< [0.04, 0.09] \text{ [JHEP 01 (2018) 138]}$$

- LHCb reports a novel data-driven method for competitive B-lifetime measurements with SL decays: precision improved by 15% in B_s^0 FS lifetime and 2x in D_s lifetime [PRL 119 (2017) 101801].
- LHCb contributed with a number of new B_c decays observed. Keep searching:
 - no signal of $B_c \rightarrow DD$ decays yet [arXiv:1712.04702].
 - no signal of excited $B_c(2S)$ states [JHEP 01 (2018) 138].
 - see Patrick Owen's talk, LFU test with $B_c^+ \rightarrow J/\psi \tau v$ and $B_c^+ \rightarrow J/\psi \mu v$ decays [PRL 120, 121801 (2018)].
- Full Run 2 data set soon ready to explore new avenues and observations.

CONGIAUSION

BACHTIP

Categorise them with a MLP exploring angles between B_c and $B_c(2S)$ candidates.

[JHEP 01 (2018) 138]

(d) MLP category: [0.6, 1.0]

$$\mathcal{R} = \frac{\sigma_{B_c^{(*)}(2S)^+}}{\sigma_{B_c^+}} \cdot \mathcal{B}(B_c^{(*)}(2S)^+ \to B_c^{(*)+}\pi^+\pi^-)$$
$$= \frac{N_{B_c^{(*)}(2S)^+}}{N_{B_c^+}} \cdot \frac{\varepsilon_{B_c^+}}{\varepsilon_{B_c^{(*)}(2S)^+}},$$

efficiency $\varepsilon_{B_c^+}$ is determined to be 0.0931 ± 0.0005

MLP category	(0.02, 0.2)	[0.2, 0.4) Efficience	[0.4, 0.6) ies in %	[0.6, 1.0]
$B_c(2S)^+$	0.148 ± 0.006	0.140 ± 0.006	0.130 ± 0.006	0.256 ± 0.008
$B_{c}^{*}(2S)^{+}$	0.118 ± 0.003	0.140 ± 0.004	0.144 ± 0.004	0.288 ± 0.005

[LP category	(0.02, 0.2)	[0.2, 0.4) Efficience	[0.4, 0.6) ies in %	[0.6, 1.0]
$B_c(2S)^+$ $B_c^*(2S)^+$	0.148 ± 0.006	0.140 ± 0.006	0.130 ± 0.006	0.256 ± 0.008
	0.118 ± 0.003	0.140 ± 0.004	0.144 ± 0.004	0.288 ± 0.005

[JHEP 01 (2018) 138]

SEARCH FOR EXCITED B.

$$\mathcal{R} = \frac{\sigma_{B_c^{(*)}(2S)^+}}{\sigma_{B_c^+}} \cdot \mathcal{B}(B_c^{(*)}(2S)^+ \to B_c^{(*)+}\pi^+\pi^-)$$
$$= \frac{N_{B_c^{(*)}(2S)^+}}{N_{B_c^+}} \cdot \frac{\varepsilon_{B_c^+}}{\varepsilon_{B_c^{(*)}(2S)^+}},$$

Table 1: Summary of the predictions for the \mathcal{R} values.

	Ref. for
BCVEGPY with listed settings	[5]
	[7]
Production according to Ref. $[5]$	[5]
Production according to Ref. [6]	[5]
	$\left[7 ight]$

	$\sqrt{s} = 7 \mathrm{TeV}$	$\sqrt{s} = 8 \mathrm{TeV}$
ATLAS	$(0.22 \pm 0.08 (\text{stat}))/\varepsilon_7$	$(0.15 \pm 0.06 (\text{stat}))$
LHCb		< [0.04, 0.09]

${\mathcal B}$ prediction	$\mathcal{R}_{B_c(2S)^+}$	$\mathcal{R}_{B_c^*(2S)^+}$
	0.02	0.04
	0.02	0.05
	0.02	0.04
	0.04	0.09
	0.05	0.12

