Observation of the rare $Z \rightarrow J/\Psi \ell \ell$ decay

Riccardo Manzoni
on behalf of the CMS collaboration

BEAUTY 2018 la Biodola, Isola d’Elba
Analysis motivations

• many rare exclusive Z decays are yet to be observed, only upper limits
 • ATLAS \(Z \rightarrow J/\Psi / Y \gamma\), CDF \(Z \rightarrow \pi^0 \gamma\), ALEPH \(Z \rightarrow \rho/\pi W\) and more
 • mostly in channels with \(\gamma\)'s

• we present the observation of the rare Z boson decay to a \(J/\Psi\) meson and two additional leptons
 • fragmentation contribution not suppressed by \(M_{\Psi}^2/M_Z^2\)
 • \(BR(Z \rightarrow J/\Psi \ell \ell)\) about one order of magnitude larger than \(BR(Z \rightarrow J/\Psi \gamma)\)
 • in principle, any vector meson (\(\rho, \omega, \phi, \Psi(2S), Y\)) can replace the \(J/\Psi (\gamma^*-V\) transition)
Analysis motivations

• large Z production rate at LHC
 • about 1k Z bosons per second are being produced in LHC collisions right now!

• clean experimental signature
 • 2 high-\(p_T\) leptons
 • isolated from hadronic activity
 • J/\(\Psi\) resonant structure, 2 softer leptons

• prototypical for rare H→ZV searches
 • which would allow access to couplings of the H boson to lighter quarks
Analysis strategy

• 2016 CMS dataset: 35.9 fb\(^{-1}\) of pp collisions at 13 TeV

• two channels considered: \(Z \to J/\Psi (\to \mu\mu) \mu\mu\) and \(Z \to J/\Psi (\to \mu\mu) \text{ ee}\)
 - the \(J/\Psi\) is always required to decay into \(\mu\mu\)

• trigger and lepton selections similar to \(H \to ZZ \to 4\ell\)
 - mixture of single- and di-lepton triggers to maximise the acceptance
 - \textit{softID} (opt. for low \(p_T\)) for muons from the \(J/\Psi\) and \textit{tightID} for the other \(\ell\)

• control channel: non resonant \(Z \to \mu^+\mu^-\mu^+\mu^-\)

\begin{align*}
\text{find } J/\Psi & \to \mu^+\mu^- \text{ candidate with } \\
\mu\mu \text{ vertex prob } & > 5\% \\
\text{find 2 extra OS } \ell & \text{ with 4-body vertex } \\
\text{prob } & > 5\% \\
\text{build 2D } m_{J/\Psi\ell\ell} & \text{ vs } m_{J/\Psi} \\
\text{distribution}
\end{align*}
m_{\psi} vs m_{J/\psi \ell \ell} distribution

- Both $\Psi_{\mu\mu}$ and Ψ_{ee} channels represented in the same plot.
- **29 Z$\rightarrow\Psi_{\mu\mu}$ events**
 18 Z$\rightarrow\Psi_{ee}$ events in the full 2D range.
- Ψ indicates both direct J/Ψ and feed down from $\Psi(2S)\rightarrow$ J/Ψ+X decays.
- 4 regions can be identified.
• Z signal - Ψ signal
• Z signal - Ψ background
CMS Preliminary

35.9 fb⁻¹ (13 TeV)

- Z background - Ψ signal

Riccardo Manzoni - ETHZ
CMS Preliminary

35.9 fb\(^{-1}\) (13 TeV)

\(m_{\psi} \rightarrow \mu^+ \mu^-\) [GeV]

\(m_{Z \rightarrow \psi \rightarrow \mu^+ \mu^-}\) [GeV]

- Z bkg - \(\Psi\) bkg
Signal extraction

- un-binned maximum likelihood fit to the 2D m_Ψ vs $m_{\Psi^\ell\ell}$ distribution
 - each channel is separately fitted

- **Z signal**: Breit-Wigner \otimes Gaussian

- **Ψ signal**: Gaussian

- **sidebands**: exponential

- 2D PDF is the product of the PDFs above
Systematic uncertainties

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>$\mathcal{R}_{J/\psi \mu^+\mu^-}$</th>
<th>$\mathcal{R}_{J/\psi \mu^+e^-}$</th>
<th>$\mathcal{R}_{J/\psi \ell^+\ell^-}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z signal shape</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Z background shape</td>
<td>6.9</td>
<td>0.5</td>
<td>3.7</td>
</tr>
<tr>
<td>ψ signal modelling</td>
<td>4.8</td>
<td>2.0</td>
<td>2.8</td>
</tr>
<tr>
<td>ψ background shape</td>
<td>1.5</td>
<td>1.5</td>
<td>1.1</td>
</tr>
<tr>
<td>Fit procedure</td>
<td>3.0</td>
<td>8.4</td>
<td>4.2</td>
</tr>
<tr>
<td>Reconstruction efficiency</td>
<td>0.9</td>
<td>5.9</td>
<td>4.0</td>
</tr>
<tr>
<td>MC statistics</td>
<td>0.7</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Decay model</td>
<td>0.7</td>
<td>1.6</td>
<td>0.8</td>
</tr>
<tr>
<td>$\psi(2S)$ feed-down</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Total</td>
<td>9.2</td>
<td>10.8</td>
<td>7.6</td>
</tr>
</tbody>
</table>

alternative PDFs

toy experiments

see next slides
Decay model uncertainty

- $Z \rightarrow J/\Psi \ell\ell$ decay is not among those considered by the generators currently on the market

- best compromise was to use PYTHIA8 and force Z to decay into $\ell\ell + J/\Psi$
 - 3-body Z decay as opposed to γ^* radiated off of one lepton
 - data-MC agreement checked with $sPlot$ technique
 - p_T, η, ϕ well modelled
 - angular $\Delta\phi(\ell_2,\Psi)$ not well described
 - systematic uncertainty added and MC reweighed to match the data
ψ(2S) feed down

- $Z → ψ(2S)(→ J/ψ+X)ℓℓ$ non distinguishable from the main process
 - the mixture of direct $J/ψ$ and $ψ(2S) → J/ψ+X$ is labeled simply $ψ$

- both $J/ψ$ and $ψ(2S) → J/ψ$ contributions are considered in establishing the observation of the $Z → ψℓℓ$ process

- the contribution from $ψ(2S)$ is evaluated using the following information:
 - branching fraction of $ψ(2S) → J/ψ + X = 61$
 - it amounts to 1.9 (1.7) events in the $J/ψμμ (J/ψee)$ channel

- no contribution from other resonances are observed
1D projections - J/Ψμμ channel

fitted signal yield 13.0 ± 3.9 events, observed significance 4.0σ
1D projections - J/Ψee channel

fitted signal yield 11.2 ± 3.4 events, observed significance 4.3σ

combined significance 5.7σ
Fiducial branching fraction ratio wrt $Z \rightarrow \mu\mu\mu\mu$

$$\mathcal{R}_{J/\psi \ell^+ \ell^-} \equiv \frac{\mathcal{B}(Z \rightarrow J/\psi \ell^+ \ell^-)}{\mathcal{B}(Z \rightarrow \mu^+ \mu^- \mu^+ \mu^-)} = \sum_\ell \left(\frac{1}{2} \frac{N_{Z \rightarrow J/\psi \ell^+ \ell^-}}{\epsilon_{Z \rightarrow J/\psi \ell^+ \ell^-}} \right) \frac{\epsilon_{Z \rightarrow \mu^+ \mu^- \mu^+ \mu^-}}{N_{Z \rightarrow \mu^+ \mu^- \mu^+ \mu^-}} \frac{1}{\mathcal{B}(J/\psi \rightarrow \mu^+ \mu^-)} \cdot \ell = \mu, e,$$

- normalisation channel $Z \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ yield 250 ± 20 events
 - from 1D fit to the $m_{4\mu}$ distribution, Breit-Wigner \(\otimes\) Gauss signal PDF
 - ratio allows for partial cancellation of systematics

- feed down from $Z \rightarrow \Psi(2S)\ell\ell$ is subtracted to isolate $Z \rightarrow J/\Psi\ell\ell$
 - $1.9 \ (1.7)$ events are subtracted from the $J/\Psi\mu\mu \ (J/\Psi ee)$ channel

- final yields: $11.1 \ (9.5) \ J/\Psi\mu\mu \ (J/\Psi ee)$

- efficiencies: $\epsilon_{\mu\mu\mu\mu} = 81.1\% \ , \ \epsilon_{J/\Psi\mu\mu} = 80.8\% \ , \ \epsilon_{J/\Psi ee} = 79.6\%$
Fiducial branching fraction ratio wrt $Z \rightarrow \mu\mu\mu\mu$

$$R_{J/\Psi \ell \ell} = 0.70 \pm 0.18 \text{ (stat)} \pm 0.05 \text{ (syst)}$$

- normalisation channel $Z \rightarrow \mu^+\mu^-\mu^+\mu^-$ yield 250 ± 20 events
 - from 1D fit to the $m_{4\mu}$ distribution, Breit-Wigner \otimes Gauss signal PDF
 - ratio allows for partial cancellation of systematics
- feed down from $Z \rightarrow \Psi(2S)\ell\ell$ is subtracted to isolate $Z \rightarrow J/\Psi \ell\ell$
 - 1.9 (1.7) events are subtracted from the $J/\Psi \mu\mu$ ($J/\Psi ee$) channel
 - final yields: 11.1 (9.5) $J/\Psi \mu\mu$ ($J/\Psi ee$)
- efficiencies: $\epsilon_{\mu\mu\mu\mu} = 81.1\%$, $\epsilon_{J/\Psi \mu\mu} = 80.8\%$, $\epsilon_{J/\Psi ee} = 79.6\%$

$$R_{J/\Psi \ell \ell} \equiv \frac{B(Z \rightarrow J/\psi \ell^+\ell^-)}{B(Z \rightarrow \mu^+\mu^-\mu^+\mu^-)} = \sum_{\ell} \left(\frac{1}{2} \frac{N_{Z \rightarrow J/\psi \ell^+\ell^-}}{\epsilon_{Z \rightarrow J/\psi \ell^+\ell^-}} \right) \frac{\epsilon_{Z \rightarrow \mu^+\mu^-\mu^+\mu^-}}{N_{Z \rightarrow \mu^+\mu^-\mu^+\mu^-}} \frac{1}{B(J/\psi \rightarrow \mu^+\mu^-)}, \ell = \mu, e,$$
Fiducial branching fraction ratio wrt $Z \to \mu\mu\mu\mu$

$$R_{J/\psi \ell^+ \ell^-} \equiv \frac{B(Z \to J/\psi \ell^+ \ell^-)}{B(Z \to \mu^+ \mu^- \mu^+ \mu^-)} = \sum_{\ell} \left(\frac{1}{2} \frac{N_{Z \to J/\psi \ell^+ \ell^-}}{e_{Z \to J/\psi \ell^+ \ell^-}^\ell} \frac{\epsilon_{Z \to \mu^+ \mu^- \mu^+ \mu^-} \epsilon_{J/\psi \ell^+ \ell^-} \epsilon_{J/\psi \ell^+ \ell^-}}{N_{Z \to \mu^+ \mu^- \mu^+ \mu^-} B(J/\psi \to \mu^+ \mu^-)} \right), \ell = \mu, e,$$

- normalisation channel $Z \to \mu^+ \mu^- \mu^+ \mu^-$ yield 250 ± 20 events
 - from 1D fit to the $m_{4\mu}$ distribution, Breit-Wigner \otimes Gauss signal PDF
 - ratio allows for partial cancellation of systematics
- feed down from $Z \to \Psi(2S)\ell\ell$ is subtracted to isolate $Z \to J/\Psi\ell\ell$
 - $1.9 (1.7)$ events are subtracted from the $J/\Psi\mu\mu$ ($J/\Psi ee$) channel
 - final yields: $11.1 (9.5)$ $J/\Psi\mu\mu$ ($J/\Psi ee$)
- efficiencies: $\epsilon_{\mu\mu\mu\mu} = 81.1\%$, $\epsilon_{J/\Psi\mu\mu} = 80.8\%$, $\epsilon_{J/\Psi ee} = 79.6\%$

$$B(Z \to J/\Psi \ell\ell) \approx 8 \cdot 10^{-7}$$ assuming $B(Z \to \mu\mu\mu\mu)$ from PDG

J/Ψ polarisation hypotheses

- Nominal results are obtained for the unpolarised J/Ψ case
 - Polarised state affect the μ kinematics and therefore the acceptance

- Fully longitudinal and transversal J/Ψ polarisation hypotheses are tested
 - Extremes range from -25% to +23% acceptance

<table>
<thead>
<tr>
<th>Polarization scenario</th>
<th>$R_{J/Ψ\mu^+\mu^-}$</th>
<th>$R_{J/Ψe^+e^-}$</th>
<th>$R_{J/Ψ\ell^+\ell^-}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal</td>
<td>25</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Transverse 0</td>
<td>21</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Transverse +</td>
<td>23</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>Transverse −</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Values in this table are percent
CMS reports the first observation of the rare \(Z \to \Psi \ell \ell \) decay with 5.7\(\sigma \) significance.

Measurement of the fiducial branching fraction ratio

\[
\frac{B[Z \to J/\Psi \ell \ell]}{B[Z \to \mu \mu \mu \mu]} = 0.70 \pm 0.18 \text{ (stat)} \pm 0.05 \text{ (syst)}
\]

in agreement with theory.
Backup
Z → J/Ψ ℓℓ diagrams

lepton propagator
order of 1/M_{ψ}²

NLO
Selections

• **$J/\Psi \rightarrow \mu\mu$**
 - $p_T^{\mu} > 3.5$ GeV and $|\eta^{\mu}| < 2.4$
 - muon ID soft + global
 - $p_T^{J/\Psi} > 8.5$ GeV and J/Ψ vertex probability > 5%

• **non-resonant $\mu\mu$**
 - $p_T^{\mu_1} > 30$ GeV, $p_T^{\mu_2} > 15$ GeV and $|\eta^{\mu}| < 2.4$
 - muon ID tight + global

• **non-resonant ee**
 - $p_T^{e_1} > 30$ GeV, $p_T^{e_2} > 15$ GeV and $|\eta^{e}| < 2.5$
 - MVA electron ID tight

• **4-lepton**
 - 4-lepton vertex probability > 5% and $L/\sigma < 4$ (significance of impact parameter)
 - relative isolation $R_{0.3} < 0.35$