

Quantity measured:

 $\mathcal{A}^{\mathrm{raw}} \equiv \frac{N_{D^0} - N_{\overline{D}^0}}{N_{D^0} + N_{\overline{D}^0}}$

The charge of the pion in $D^{*\pm} \rightarrow D^0 \pi^{\pm}$ decays is used to determine the flavour of the D⁰ meson at production. $\sigma_{\text{prod}}(D^{*+}) \neq \sigma_{\text{prod}}(D^{*-})$

 K_s^0 are reconstructed in the final state $\pi^+\pi^-$.

 $\mathcal{A}^{ ext{raw}} pprox \mathcal{A}^{CP} + \mathcal{A}^{ ext{prod}} + \mathcal{A}^{ ext{det}}$

Asymmetric detector acceptance

 $\overline{\mathsf{D}}^0$

To cancel A^{prod} and A^{det} the calibration channel $D^0 \rightarrow K^+ K^-$ is used

- $A^{CP}(K^+ K^-)=(0.04 \pm 0.12 \text{ (stat)} \pm 0.10 \text{ (syst)})\% [6]$
- $A^{CP}(K_{S}^{0}K_{S}^{0}) = A^{raw}(K_{S}^{0}K_{S}^{0}) A^{raw}(K^{+}K^{-}) + A^{CP}(K^{+}K^{-})$

Data samples collected in 2015-2016 at \sqrt{s} =13 TeV, ~ 2fb⁻¹ of integrated luminosity

 \succ LL sample: both K_s⁰ are reconstructed from Long tracks

 \succ LD sample: one K_s^0 is Long and the other one is **Downstream**

Main background sources

Contamination from $D^0 \rightarrow K_s^0 \pi^+ \pi^-$: reduced using information on K_s^0 flight distance.

Contamination from secondary decays, i.e. decays in which the D* is coming from a b-hadron decay and not from the primary vertex PV (same A^{CP}, but different A^{prod}): reduced usign displacement information.

output of kNN classifier.

References:

[1] U. Nierste and S. Schacht, Phys. Rev. D92 (2015) 054036, arXiv:1508.00074 [2] CLEO collaboration, G. Bonvicini et al., Phys. Rev. D63 (2001) 071101, arXiv:hep-ex/0012054 [3] LHCb collaboration, R. Aaij et al., JHEP 10 (2015) 055, arXiv:1508.06087 [4] Belle collaboration, N. Dash et al., Phys. Rev. Lett. 119 (2017) 171801, arXiv:1705.05966

[5] LHCb collaboration, A. A. Alves Jr. et al., JINST 3 (2008) S08005 [6] LHCb collaboration, R. Aaij et al., Phys. Lett. B767 (2017) 177, arXiv:1610.09476