Introduction 0000000	B^{\pm} Production	Quarkonia Production	Conclusions o	Backup

B^+ and Onia cross section at 13 TeV at CMS

P. Ronchese - CMS collaboration

University and INFN Padova

17th International Conference on *B*-Physics at Frontier Machines

La Biodola, Italy May 6-11, 2018

Outline				
Introduction	<i>B</i> [±] Production ○○○○○	Quarkonia Production	Conclusions o	Backup

- Introduction
- B^{\pm} production
- Quarkonia production
- Conclusions

Introduction ●○○○○○○○	B [±] Production ○○○○○	Quarkonia Production	Conclusions o	Backup
Motivations				

Results from 2015 data taking at $\sqrt{s} = 13$ TeV :

- B^{\pm} production cross section
- Quarkonia production cross sections

Results from 2015 data taking at $\sqrt{s} = 13 \text{ TeV}$:

- B^{\pm} production cross section
- Quarkonia production cross sections

Introduction 0000000	B [±] Production ○○○○○	Quarkonia Production	Conclusions o	Backup			

Muon reconstruction

- 3 detectors dedicated to muon trigger and reconstruction
- Stand-alone reconstruction capability by muon detectors
- Tracker-muon match:
 - inside-out: more efficient at low p_T
 - outside-in: more efficient at high *p*_T

Performances

JINST 7 (2012) P10002

- Misidentification probability *P*_{mis} < 1%

- Momentum resolution
 σ(p_T) ~ 1 ÷ 6% for
 p_t < 100 GeV

Introduction 00000000	B [±] Production ○○○○○	Quarkonia Production	Conclusions O	Backup
Triaaer				

- High luminosity
- Limited bandwidth ⇒ Di-muon triggers possibly plus other tracks
- L1: hardware (fast, rate \sim 100 kHz)
- HLT: software (full track reconstruction, rate \sim 1 kHz)

Specific triggers developed for different analyses				
	 transverse momentum, (pseudo)rapidity 			
Cuts on	• vertex χ^2 and displacement			
	 di-muon mass & pointing angles 			

Intro 000	duction oo●oo	<i>B</i> [±] Production ○○○○○	Quarkonia Production	Conclusions	Backup
"L	egacy" res	sults from Rur	1: ($\sqrt{s} = 7,8^{-1}$	TeV)	
			B mesons & baryons		
	$ \begin{aligned} \sigma(pp \to B^+ X) \\ \sigma(pp \to B_0 X) \\ \sigma(pp \to B_s X) \\ B_c^{\pm} \to J/\psi \pi^{\pm} \\ \Lambda_b^0 \text{ polarizatio} \end{aligned} $) = $(\pi^+\pi^-)$ n		PRL 106 PRL 106 PRD 84 JHEF ar:	(2011) 112001 (2011) 252001 (2011) 052008 > 01 (2015) 063 Xiv:1802.04867
	Quarkonia				
	$\sigma(pp \rightarrow (J/\psi, \psi(nS)))$ $(J/\psi, \psi(nS))$ $\Upsilon(nS)$ polariz $\sigma(\chi_{c2})/\sigma(\chi_{c1})$	$(\psi(2S), \Upsilon(nS))X)$ $\Upsilon(nS))$ polarization ations & production $(\chi_{b2})/\sigma(\chi_{b1})$	JHEP 02 (2012) 011, F F ratios vs. multiplicity	PRL 114 (2015) 191802, PLB PLB 727 (2013) 381, PRL 110 PLB 761 (2016) 31, CMS-P/ EPJC (2012) 72:2251, PLB	727 (2013) 101 (2013) 081802 AS-BPH-14-009 743 (2015) 383
		Doi	uble quarkonia & exo	lica	
	Double J/ψ p Double Υ pro X(3872) proc Observation of	roduction duction luction of $B^{\pm} ightarrow \psi$ (2S) ϕK^{\pm}		JHEF JHEF JHEF PLE	 09 (2014) 094 05 (2017) 013 04 (2013) 154 3764 (2017) 66

Search for $X_b \rightarrow \Upsilon(1S)\pi^+\pi^-$ Search for the X(5568) state in $B_s^0\pi^\pm$ decays

PLB 727 (2013) 57 CMS-PAS-BPH-16-002

Double quarkonia & exotic	28
---------------------------	----

Double J/ψ production Double Υ production X(3872) production Observation of $B^{\pm} \rightarrow \psi(2S)\phi K^{\pm}$ Search for $X_b \rightarrow \Upsilon(1S)\pi^+\pi^-$ Search for the X(5568) state in $B_s^0\pi^{\pm}$ decays JHEP 09 (2014) 094 JHEP 05 (2017) 013 JHEP 04 (2013) 154 PLB 764 (2017) 66 PLB 727 (2013) 57 CMS-PAS-BPH-16-002

Intro 000	duction oooo●	<i>B</i> [±] Production ooooo	Quarkonia Production	Conclusions o	Backup		
"L	'Legacy" results from Run-1: ($\sqrt{s} = 7,8$ TeV)						
			B mesons & baryons				
	$\sigma(pp \rightarrow B^+, \sigma(pp \rightarrow B_0))$ $\sigma(pp \rightarrow B_s)$ $B_c^{\pm} \rightarrow J/\psi \pi$ Λ_b^0 polarizati	$egin{array}{c} X) \ X) \ X) \ au^{\pm}(\pi^+\pi^-) \ au^{\pm}(\pi^+\pi^+\pi^-) \ au^{\pm}(\pi^+\pi^+\pi^+\pi^+) \ au^{\pm}(\pi^+\pi^+\pi^+\pi^+) \ au^{\pm}(\pi^+\pi^+\pi^+) \ au^{\pm}(\pi^+\pi^+\pi^+) \ au^{\pm}(\pi^+\pi^+\pi^+) \ au^{\pm}(\pi^+\pi^+\pi^+) \ au^{\pm}(\pi^+\pi^+\pi^+) \ au^{\pm}(\pi^+\pi^+) \ au$		PRL 106 (2011 PRL 106 (2011 PRD 84 (2011 JHEP 01 (2 arXiv:18() 112001) 252001) 052008 015) 063 02.04867		
			Quarkonia				
	$\sigma(pp \rightarrow (J/(J/\psi, \psi)))$ $\sigma(J/\psi, \psi)$ $\tau(nS)$ polar $\sigma(\chi_{c2})/\sigma(\chi)$	$(\psi, \psi(2S), \Upsilon(nS))X)$ $(\psi, \gamma(nS))$ polarizatio rizations & production $(c_1), \sigma(\chi_{b2})/\sigma(\chi_{b1})$) HEP 02 (2012) 011, PRL on PLB n ratios vs. multiplicity PL E	114 (2015) 191802, PLB 727 (2 727 (2013) 381, PRL 110 (2013 LB 761 (2016) 31, CMS-PAS-BPH LJC (2012) 72:2251, PLB 743 (2	013) 101) 081802 H-14-009 015) 383		
		σ	$(pp ightarrow (J/\psi,\psi(2S)))$	$(, \Upsilon(nS))X)$ cross-	section		
	Double J/ψ Double Υ pr X(3872) pro Observation	production oduction oduction of $B^{\pm} \rightarrow \psi(2S)$	Measured a	at $\sqrt{s} = 13$ Te	V		
	Search for X Search for th	$X_b ightarrow \Upsilon(1\mathrm{S})\pi^+\pi^-$ he $X(5568)$ state in R	$B^0_s \pi^\pm$ decays	PLD /2/ (CMS-PAS-BP)	2013) 57 H-16-002		

Outline				
Introduction	<i>B</i> [±] Production ○○○○○	Quarkonia Production	Conclusions o	Backup

Introduction

• B^{\pm} production

- Quarkonia production
- Conclusions

	duction		B^{\pm} Production Q	uarkonia Produc	tion	Conclusions o	Backup
B±	B^{\pm} production cross-section						
			$B^{\pm} ightarrow J/\psi I$	$K^{\pm} \;, J/\psi$	$\rightarrow \mu$	$^+\mu^-$	
	 Studies of <i>b</i>-hadron production at the higher energies ⇒ new important test of theoretical calculations First B[±] production cross-section measurement at √s = 13 TeV 						
L	= 48	.1 p	$ y_B < 2.1 \; , \; 10 \; 0$	${\sf GeV} < p_T$, в <	100 GeV PLB 771 (201	7) 435
	Differential cross-section, vs. transverse momentum and rapidity $\frac{d\sigma(pp \to B^+X)}{dz} = \frac{n_{sig}(z)}{2 \cdot \mathcal{B} \cdot A \cdot \epsilon(z) \cdot \mathcal{L} \cdot \Delta z}$						
	Z	=	р _{т,в} , у _в	$n_{\rm sig}(z)$	=	signal yield	
	2	=	account for	Α	=	acceptance	
	B	=	${\cal B} { m charge symmetry} \ {\cal B}({\cal B}^\pm o {\cal J}/\psi {\cal K}^\pm) \ {\cdot} {\cal B}({\cal J}/\psi o \mu^+\mu^-)$	$\epsilon(z)$ \mathcal{L} Δz	= = =	efficiency integrated luminosity bin width	,

Event selection

- Muon quality: match chamber segment with extrapolated track
- J/ψ candidate quality: invariant mass and vertex fit χ^2
- B^{\pm} candidate quality: common vertex, flight distance and direction

$B^{\pm} \rightarrow U_{ab}K^{\pm}$ accontance and efficiency							
	00000						
Introduction	B [±] Production	Quarkonia Production	Conclusions	Backup			

Overall $\mathbf{A} \cdot \boldsymbol{\epsilon}$ estimation

- Simulated events with $|y_B| < 2.1$, 10 GeV $< p_{T,B} <$ 100 GeV
- Selected event fraction:
 - 0.78% (10 GeV $< p_{T,B} <$ 13 GeV) ; 20% (70 GeV $< p_{T,B} <$ 100 GeV)
 - 3.6% (0 < $|y_B| < 0.2$); 1.4% (1.8 < $|y_B| < 2.1$)

Trigger and muon-reconstruction efficiency

- Inclusive $J/\psi \rightarrow \mu^+\mu^-$ data sample
- Tag-and-probe method
 - one muon satisfying stringent quality requirements
 - second muon identified only with tracker or muon system
- Efficiency compared with simulation, difference included in systematic uncertainties

P. Ronchese - CMS

Cross sections at CMS - 15

P. Ronchese - CMS Cross sections at CMS - 16

Introduction 0000000	B [±] Production ○○○○○	Quarkonia Production	Conclusions o	Backup
Outline				

- Introduction
- B^{\pm} production
- Quarkonia production
- Conclusions

P. Ronchese - CMS

Simultaneous fit to mass and "pseudo proper decay length":

Decay length [cm]

Decay length [cm]

- prompt: resolution function
- non-prompt: exponential convolved with resolution function
- background: gaussian plus exponential

Introduction 00000000	B^{\pm} Production	Quarkonia Production	Conclusions o	Backup		
$Qar{Q} o \mu^+ \mu$	$Qar{Q} o \mu^+\mu^-$ acceptance and efficiency					
Acceptance						
Generated $Q\bar{Q}$ events, decay to $\mu^+\mu^-$ simulated with PYTHIA8 $\mathcal{A} = \frac{N_{\text{kin}}^{\text{gen}}(p_T, y)}{N^{\text{gen}}(p_T, y)}$ • $N_{\text{kin}}^{\text{gen}}(p_T, y)$: generated events $N_{\text{kin}}^{\text{gen}}(p_T, y)$: events passing selection • Acceptance stored in finely binned histograms • Unpolarized production assumed						
Efficiency						
Tag	-and-probe meth	nod				
 dim cori 	uon efficiency: prection factor acc	product of two efficie counting for correlati	ncies multiplied	by a		

Acceptance and efficiency calculated event-by-event

$\Upsilon(1S), \Upsilon(2S), \Upsilon(3S)$: results

Introduction 00000000	B [±] Production ○○○○○	Quarkonia Production	Conclusions •	Backup	
Conclusions					

- Differential cross section for B^+ production at $\sqrt{s} = 13$ TeV has been measured up to 100 GeV in p_T . A reasonable agreement with FONLL calculations and with PYTHIA has been found.
- The double differential production cross sections at $\sqrt{s} = 13$ TeV for J/ψ , $\psi(2S)$, $\Upsilon(nS)$ have been measured. These results shall contribute to consolidate the underlying hypotheses of NRQCD and provide further input to constrain the theory parameters.

Introduction 0000000	B [±] Production ○○○○○	Quarkonia Production	Conclusions o	Backup	
Extra informations					

BACKUP

Introduction 00000000	B^{\pm} Production	Quarkonia Production	Conclusions o	Backup			
B^{\pm} production: systematic uncertainties							
		Signal yield					
 Different signa back B[±] - 	mass modeling al: 3 gaussians or ground: 2^{nd} order $\rightarrow J/\psi KX$ events:	functions: gaussian + CB polynomial mass shift					

- Include the rare decay $B^{\pm}
 ightarrow J/\psi \pi^{\pm}$
- p_T , |y| bin to bin migration due to finite resolution

Other sources

• Luminosity: 2.3%

•
$$\mathcal{B}(B^{\pm} \rightarrow J/\psi K^{\pm} \rightarrow \mu^{+}\mu^{-}K^{\pm})$$
: 3.1%

ntroductio	n B [±] Production	Quarkonia Production	Conclusions o	Backup		
Quarkonia production: systematic uncertainties						
		Signal yield				
	Diffe	rent mass fits:				
	 changes in CB function parameters 					
	fixed/free mean mas	sses				

exponential/linear function for background

Non-prompt fraction

- Decay length from:
 - average interaction point
 - nearest primary vertex along beam direction
- Different functions for background modeling
- Changes in parameter constraints