Heavy-flavour production

- that

Fabio Ferrari on behalf of the LHCb collaboration Università di Bologna and INFN – Sezione di Bologna Beauty 2018

Fabio Ferrari

Introduction

- LHCb geometrical acceptance allows to perform unique measurements in the forward region
 - Complementary to ATLAS/CMS
- Today results
 - Y production in pp collisions at $\sqrt{s} = 13$ TeV
 - B^+ production cross-section in pp collision at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 13$ TeV
 - D_s^+ production asymmetry at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV

The LHCb detector

Y production in *pp* collisions at $\sqrt{s} = 13$ TeV

Motivations

- Study of heavy quarkonium production in high-energy collisions provides information on QCD
- Several models proposed to describe underlying dynamics
 - Colour singlet model (CSM)
 - Non-relativistic QCD (NRQCD)
 - Colour Evaporation Model (CEM)
- Calculate ratio with respect to 7 and 8 TeV results → cancel majority of systematic uncertainties

Analysis strategy

LHCb-PAPER-2018-002

Results

LHCb-PAPER-2018-002

 $\begin{aligned} \mathcal{B}(\Upsilon(1S) \to \mu^+ \mu^-) &\times \sigma(\Upsilon(1S), 0 < p_{\rm T} < 15 \,\text{GeV}/c, 2 < y < 4.5) = 4687 \pm 10 \pm 294 \text{ pb} \\ \mathcal{B}(\Upsilon(2S) \to \mu^+ \mu^-) &\times \sigma(\Upsilon(2S), 0 < p_{\rm T} < 15 \,\text{GeV}/c, 2 < y < 4.5) = 1134 \pm 6 \pm 71 \text{ pb} \\ \mathcal{B}(\Upsilon(3S) \to \mu^+ \mu^-) &\times \sigma(\Upsilon(3S), 0 < p_{\rm T} < 15 \,\text{GeV}/c, 2 < y < 4.5) = 561 \pm 4 \pm 36 \text{ pb} \end{aligned}$

- Measurements are dominated by systematic uncertainty
 - Main contribution due to trigger efficiency and luminosity determination
- Prediction from NRQCD provides a reasonable description of data at high p_T

Ratios

LHCb ГНСр

8

• iS to 1S ratio increasing as function of p_T and flat as function of y

B⁺ production cross-section in pp collision at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 13$ TeV

Motivations

CINFN LHCD

- Precise measurement of production cross-section of B⁺ mesons provides important test for QCD calculations
- Complementary phase-space with respect to ATLAS and CMS allow to test theory at low p_T /high y
- Possibility to measure ratios at different centre-of-mass energies to largely cancel theory and experimental uncertainties

	Luminosity	\sqrt{s} (TeV)	Range	Cross Section (µb)	
CDF 2	$739\mathrm{pb}^{-1}$	1.96	$p_{\mathrm{T}} > 6 \mathrm{GeV} / c, \ y < 1$	2.78 ± 0.24	
CMS 3	$5.8\mathrm{pb}^{-1}$	7	$p_{ m T}>5{ m GeV}/c, \ y <2.4$	$28.1 \pm 2.4 \pm 2.0 \pm 3.1$	
ATLAS [4]	$2.4{\rm fb}^{-1}$	7	$9 < p_{\rm T} < 120 {\rm GeV}/c,$ y < 2.25	$10.6\pm 0.3\pm 0.7\pm 0.2\pm 0.4$	² Phys. Rev. D75 (2007) 012010
LHCb 5	$35\mathrm{pb}^{-1}$	7	$0 < p_{ m T} < 40 { m GeV}/c, \ 2 < y < 4.5$	$41.5\pm1.5\pm3.1$	³ Phys. Rev. Lett. 106 (2011) 112001 ⁴ JHEP 10 (2013) 042
LHCb 6	$362\mathrm{pb}^{-1}$	7	$0 < p_{\rm T} < 40 { m GeV}/c, \ 2 < y < 4.5$	$38.9\pm0.3\pm2.8$	⁵ JHEP 04 (2012) 93 ⁶ JHEP 08 (2013) 117

Beauty 2018

Current experimental status

Fabio Ferrari

Analysis

JHEP 12 (2017) 026

Results

Integrated results

$$\sigma(pp \to B^{\pm}X, \sqrt{s} = 7 \text{ TeV}) = 43.0 \pm 0.2 \pm 2.5 \pm 1.7 \,\mu\text{b}$$

 $\sigma(pp \to B^{\pm}X, \sqrt{s} = 13 \text{ TeV}) = 86.6 \pm 0.5 \pm 5.4 \pm 3.4 \,\mu\text{b}$

The results are in good agreement with FONLL predictions

FONLL predictions: Eur. Phys. J C75 (2015) 610

13/7 TeV ratio

LHCD

13

- Also the ratio at the two different centre-of-mass energies (13 and 7 TeV) is compatible with FONLL predictions
 - FONLL predictions from Eur. Phys. J C75 (2015) 610

 D_s^+ production asymmetry at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV

Motivation

LHCb-PAPER-2018-010

- b and c-hadrons are not expected to be produced at the same rate with respect to b and c-hadrons in pp collisions
 - *u* and *d* quarks from the **remnants** of the colliding protons can combine with \overline{b} and \overline{c} quarks to form a **meson**, whereas the opposite **can't happen**
 - This has to be **compensated** by an opposite asymmetry in the other **species**

- Production asymmetry measurements are a key ingredient to perform CP violation measurements
 - One needs to disentangle the physical CP asymmetry from other spurious effects
- Production asymmetries are defined as:

$$A_{P}(D_{(s)}^{+}) = \frac{\sigma(D_{(s)}^{+}) - \sigma(D_{(s)}^{-})}{\sigma(D_{(s)}^{+}) + \sigma(D_{(s)}^{-})}$$

where σ is the inclusive prompt production cross-section

Analysis

*Phys. Rev. D95 (2017) 052005 Phys. Lett. B774 (2017) 139 Phys. Rev. Lett. 114 (2015) 041601

LHCb-PAPER-2018-010

Results

• Integrating in the range $2.5 < p_T(\text{GeV}/c) < 25$ and 2.0 < y < 4.5 the D_s^+ production asymmetry is found to be

 $A_P(D_s^+) = (-0.52 \pm 0.13 \text{ (stat)} \pm 0.10 \text{ (syst)})\%$

- Evidence for nonzero asymmetry at 3.3σ level
- No dependence on kinematics observed

Comparison with Pythia 8.1

- The Pythia event generator includes models accounting for mechanisms that cause production asymmetries
- Pythia simulation shows a strong dependence on both p_T and y, that is not observed in data

 Results obtained in this analysis can be used to tune production models for various event generators

Conclusions

- Several results presented today, exploiting both Run 1 and Run 2 data samples collected by LHCb
- LHCb is testing theoretical model predictions in a unique kinematic region
 - Interplay with theory community very important
- Many more measurements are coming, using Run 2 and 5 TeV data sets
- Run 2 samples allow to perform analyses in final states that were limited by statistics in Run 1
- Several new results are coming this summer... stay tuned...!

Thanks for your attention!

Backup

$\Upsilon(nS)$ production

- Double-differential cross-sections multiplied by dimuon branching fractions as a function of p_T

• Production cross-sections multiplied by dimuon branching fractions integrated over $0 < p_T(\text{GeV}/c) < 15$ and 2.0 < y < 4.5

LHCD

CINFN

22

$\Upsilon(nS)$ production

• Summary of systematic uncertainties

Source	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	Comment	
Fit models	1.9	1.8	2.5	Correlated	
Simulation statistics	0.4 - 4.6	0.5 - 5.1	0.5 - 4.4	Bin dependent	
Global event requirements	0.6	0.6	0.6	Correlated	
Trigger	3.9 - 9.8	3.9 - 9.8	3.9 - 9.8	Bin dependent	
Tracking	(0.1 - 6.6)	(0.2 - 6.4)	(0.2 - 6.5)	Completed	
Hacking	$\oplus 2 imes 0.8$	$\oplus 2 imes 0.8$	$\oplus 2 \times 0.8$	Correlated	
Muon identification	0.1 - 7.9	0.1 - 7.6	0.2 - 8.5	Correlated	
Vertexing	0.2	0.2	0.2	Correlated	
Kinematic spectrum	0.0 - 1.1	0.0 - 2.2	0.0 - 2.5	Bin dependent	
Radiative tail	1.0	1.0	1.0	Correlated	
Luminosity	3.9	3.9	3.9	Correlated	
Total	6.2 - 14.3	6.2 - 14.6	6.4 - 14.9	Correlated	

production cross-section

Measured differential cross-section as a function of p_T and y

24

B⁺ production cross-section

• Summary of systematic uncertainties

Uncortainty (%)			
= 10 metallity (70)			
$\sqrt{13 \mathrm{TeV}} R(13 \mathrm{TeV}/7 \mathrm{TeV})$			
3.9 3.4			
3.9 0.0			
2.7 0.0			
1.3 1.5			
0.1 0.2			
0.1 0.2			
2.6 1.0			
0.1 0.4			
2.6 4.4			
0.7 1.0			
1.1 0.1			
0.2 0.3			
7.4 5.9			

D_{s}^{+} production asymmetry

• Production asymmetry as a function of p_T in bins of y, separated by magnet polarity

D_s^+ production asymmetry

Numerical results

		y			
p_{T} [${ m GeV}/c$]	2.0 - 3.0	3.0 - 3.5	3.5 - 4.5	
2.5 -	-4.7	$-0.73 \pm 0.62 \pm 0.87$	$-1.35 \pm 0.55 \pm 0.41$	$-1.15 \pm 0.60 \pm 0.23$	
4.7 -	-6.5	$-0.57 \pm 0.51 \pm 0.35$	$0.16 \pm 0.49 \pm 0.25$	$-0.70 \pm 0.48 \pm 0.17$	
6.5 -	- 8.5	$-1.07 \pm 0.40 \pm 0.08$	$-0.76 \pm 0.47 \pm 0.09$	$-0.67 \pm 0.56 \pm 0.16$	
8.5 -	-25.0	$-0.15 \pm 0.32 \pm 0.08$	$0.03 \pm 0.42 \pm 0.11$	$-1.19 \pm 0.63 \pm 0.09$	
			y		
p_{T} [${ m GeV}/c$]	2.0 - 3.0	3.0 - 3.5	3.5 - 4.5	
2.5 -	- 4.7	$-0.53 \pm 0.40 \pm 0.87$	$-0.32 \pm 0.37 \pm 0.41$	$-0.64 \pm 0.40 \pm 0.23$	
4.7 -	- 6.5	$-0.76 \pm 0.29 \pm 0.35$	$-0.32 \pm 0.30 \pm 0.25$	$-0.87 \pm 0.30 \pm 0.17$	
6.5 -	- 8.5	$-0.36 \pm 0.27 \pm 0.08$	$-0.64 \pm 0.31 \pm 0.09$	$-0.51 \pm 0.36 \pm 0.16$	
8.5 -	- 25.0	$-0.51 \pm 0.17 \pm 0.08$	$-0.40 \pm 0.26 \pm 0.11$	$-0.75 \pm 0.39 \pm 0.09$	
			y		
p_{T} [${ m GeV}/c~]$	2.0 - 3.0	3.0 - 3.5	3.5 - 4.5	
2.5 -	-4.7	$-0.58 \pm 0.34 \pm 0.87$	$-0.57 \pm 0.31 \pm 0.41$	$-0.76 \pm 0.34 \pm 0.23$	
4.7 -	-6.5	$-0.72 \pm 0.25 \pm 0.35$	$-0.21 \pm 0.26 \pm 0.25$	$-0.83 \pm 0.26 \pm 0.17$	
6.5 -	-8.5	$-0.53 \pm 0.23 \pm 0.08$	$-0.67 \pm 0.26 \pm 0.09$	$-0.55 \pm 0.30 \pm 0.16$	
8.5 -	-25.0	$-0.43 \pm 0.15 \pm 0.08$	$-0.30 \pm 0.22 \pm 0.11$	$-0.86 \pm 0.33 \pm 0.09$	

