Semileptonic B Decays: Theory Overview

Olcyr Sumensari

INFN Padova

Beauty, Isola d'Elba, May 7, 2018.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 674896.

(日) (部) (目) (日)

Outline

- $|V_{cb}|$ plays an important role in the unitarity triangle analysis and the predictions of FCNC, $|V_{tb} V_{ts}^*|^2 \simeq |V_{cb}|^2 [1 + O(\lambda^2)].$
 - \Rightarrow Long standing tension between inclusive and exclusive determinations.
- \bullet Anomalies in tree and loop-level B decays:

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)}\tau\bar{\nu})}{\mathcal{B}(B \to D^{(*)}\ell\bar{\nu})} \& R_{D^{(*)}}^{\exp} > R_{D^{(*)}}^{SM}$$

$$R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)} \mu \mu)}{\mathcal{B}(B \to K^{(*)} ee)} \bigg|_{q^2 \in [q^2_{\min}, q^2_{\max}]} \& \quad R_{K^{(*)}}^{\exp} < R_{K^{(*)}}^{\mathrm{SM}}$$

 \Rightarrow Violation of Lepton Flavor Universality (LFU)?

<u>This talk</u>: (i) Latest V_{cb} and (ii) $R_{D^{(*)}}$ (SM and beyond).

$|V_{cb}|$: inclusive vs. exclusive

э

< ロ > < 同 > < 三 > < 三 > 、

[1612.07233]

$$\begin{split} |V_{cb}| &= (42.19 \pm 0.78) \times 10^{-3} & \text{from} \quad B \to X_c \ell \bar{\nu} \\ |V_{cb}| &= (39.05 \pm 0.47_{\text{exp}} \pm 0.58_{\text{th}}) \times 10^{-3} & \text{from} \quad B \to D^* \ell \bar{\nu} \\ |V_{cb}| &= (39.18 \pm 0.94_{\text{exp}} \pm 0.36_{\text{th}}) \times 10^{-3} & \text{from} \quad B \to D \ell \bar{\nu} \end{split}$$

 $|V_{cb}|$ extracted from exclusive decays are systematically lower than the one determined from inclusive semileptonic decays.

• New $B \to D^*$ result: $|V_{cb}| = 37.4(1.3) \times 10^{-3}$ [Belle, 1702.01521]

c.f. Gambino talk at Moriond EW 2018

$B \to D^{(*)} \ell \bar{\nu} \text{ decays}$

$$\begin{split} \mathcal{B}(B \to D^{(*)} \ell \bar{\nu})^{\mathrm{exp}} \text{ combined with} \\ \langle D^{(*)} | \bar{c}_L \gamma^{\mu} b_L | B \rangle^{\mathrm{theo.}} \text{ allow extracting } | V_{cb} |. \end{split}$$

For light (heavy) leptons:

- B → D: one (two) form factors with f₀(0) = f₊(0) at q² = 0;
 Lattice QCD at q² ≠ q²_{max} (w ≠ 1) for both form factors
 [MILC 2015, HPQCD 2015]
- $B \rightarrow D^*$: three (four) form factors;

 \circ Lattice QCD at $q^2=q^2_{
m max}$ for leading form factor $[A_1(q^2_{
m max})]$

[MILC 2014, HPQCD 2016]

 \circ Shape of leading form factor $[A_1(q^2)]$ constrained by analiticity and unitarity; Normalization by HQET, refined by LQCD.

Recent developments: Refitting Belle distribution

Results of new Belle angular analysis of $\bar{B} \rightarrow D^* \ell \bar{\nu}$ [1702.01521] revealed that $|V_{cb}|^{\text{excl}}$ depends on parametrization of form factors:

 $\frac{\mathrm{d}\mathcal{B}(\bar{B}\to D^*(\to D\pi)\ell\bar{\nu})}{\mathrm{d}w\,\mathrm{d}\cos\theta_D\,\mathrm{d}\cos\theta_\ell\,\mathrm{d}\phi} \propto |V_{cb}|^2 f\left(A_1(q^2), V(q^2), A_2(q^2), m_\ell\,A_0(q^2)\right)$ $= |V_{cb}|^2 |A_1(w)|^2 \widetilde{f}\left(R_1(w), R_2(w), m_\ell\,R_0(w)\right)$

with $w = (m_B^2 + m_{D^*}^2 - q^2)/(2m_Bm_{D^*}).$

Recent developments: Refitting Belle distribution

Results of new Belle angular analysis of $\bar{B} \rightarrow D^* \ell \bar{\nu}$ [1702.01521] revealed that $|V_{cb}|^{\text{excl}}$ depends on parametrization of form factors:

 $\frac{\mathrm{d}\mathcal{B}(\bar{B}\to D^*(\to D\pi)\ell\bar{\nu})}{\mathrm{d}w\,\mathrm{d}\cos\theta_D\,\mathrm{d}\cos\theta_\ell\,\mathrm{d}\phi} \propto |V_{cb}|^2 f\left(A_1(q^2),\,V(q^2),A_2(q^2),\,m_\ell\,A_0(q^2)\right)$ $= |V_{cb}|^2 |A_1(w)|^2 \tilde{f}\left(R_1(w),R_2(w),\,m_\ell\,R_0(w)\right)$

with $w = (m_B^2 + m_{D^*}^2 - q^2)/(2m_B m_{D^*}).$

HQET inspired:

• CLN [Caprini et al. 1997]:

$$h_{A_1}(w) = h_{A_1}(1) \left[1 + 8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3 \right]$$

$$R_1(w) = R_1(1) - 0.12(w - 1) + 0.05(w - 1)^2$$

$$R_2(w) = R_2(1) - 0.11(w - 1) - 0.06(w - 1)^2$$

• BGL [Boyd et al. 1997]: do not fix shape parameters in red. Otherwise, parameterization is the same in $z = (\sqrt{w+1} - \sqrt{2})/(\sqrt{w+1} + \sqrt{2})$.

Olcyr Sumensari (INFN Padova)

Recent development: Refitting Belle distribution

Results of new Belle angular analysis of $\bar{B} \to D^* \ell \bar{\nu}$ [1702.01521] revealed that $|V_{cb}|^{\text{excl}}$ depends on parametrization of form factors:

$$\begin{split} h_{A_1}(w) &= h_{A_1}(1) \left[1 + 8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3 \right] \\ R_1(w) &= R_1(1) - 0.12(w-1) + 0.05(w-1)^2 \\ R_2(w) &= R_2(1) + 0.11(w-1) - 0.06(w-1)^2 \end{split}$$

BGL gives $R_2(1)$ larger than HQET by more than 2σ

[Bigi et al. 2017], [Grinstein et al. 2017].

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・ ・

$ V_{cb} _{\rm CLN}^{\rm excl} = (38.2 \pm 1.5) \times 10^{-3}$	$ V_{cb} _{BGL}^{excl} = (41.7^{+2.0}_{-2.1}) \times 10^{-3}$
$ V_{cb} _{1S}^{\text{incl}} = (42.0 \pm 0.5) \times 10^{-3}$	$ V_{cb} _{\rm kin}^{\rm incl} = (42.2 \pm 0.8) \times 10^{-3}$

Both fits (using CLN or BGL) are good \Rightarrow Inconclusive!

 \Rightarrow Belle-II will remedy the situation.

Way out: $|V_{cb}|$ from LQCD & Belle-II data at small recoil values.

Lepton flavor universality violation: $b \rightarrow c \ell \bar{\nu}$

・ 同 ト ・ ヨ ト ・ ヨ ト

(i) $R_{D^{(*)}} = \mathcal{B}(B \to D^{(*)}\tau\bar{\nu})/\mathcal{B}(B \to D^{(*)}\ell\bar{\nu})$

Experiment

More in talks by Neubert, Owen, Simonetto and Rudolph

- R_D : *B*-factories [$\approx 2\sigma$]
- R_{D^*} : B-factories and LHCb [$\leq 3\sigma$]; dominated by BaBar
- LHCb confirmed tendency $R_{J/\psi}^{exp} > R_{J/\psi}^{SM}$, i.e. $B_c \to J/\psi \ell \bar{\nu}$
 - \Rightarrow Needs confirmation from Belle-II (and LHCb run-2)!
 - \Rightarrow Other LFUV ratios will be a useful cross-check $(R_{D_s}, R_{D_s^*}, R_{\Lambda_c} \dots)$

イロト イボト イヨト イヨト

(i) $R_{D^{(*)}} = \mathcal{B}(B \to D^{(*)}\tau\bar{\nu})/\mathcal{B}(B \to D^{(*)}\ell\bar{\nu})$

Theory (tree-level in SM)

See talk by Bouchard

• R_D : lattice QCD at $q^2 \neq q_{\text{max}}^2$ (w > 1) available for both leading (vector) and subleading (scalar) form factors [MILC 2015, HPQCD 2015]

$$\langle D(k)|\bar{c}\gamma^{\mu}b|B(p)\rangle = \left[(p+k)^{\mu} - \frac{m_B^2 - m_D^2}{q^2}q^{\mu}\right]f_+(q^2) + q^{\mu}\frac{m_B^2 - m_D^2}{q^2}f_0(q^2)$$

with $f_+(0) = f_0(0)$.

• R_{D^*} : lattice QCD at $q^2 \neq q_{\max}^2$ not available, scalar form factor $[A_0(q^2)]$ never computed on the lattice

Use decay angular distributions measured at *B*-factories to fit the leading form factor $[A_1(q^2)]$ and extract two others as ratios wrt $A_1(q^2)$. All other ratios from HQET (NLO in $1/m_{c,b}$) [Bernlochner et al 2017] but with more generous error bars (truncation errors?)

ヘロア ヘロア ヘビア ヘビア

SM predictions for $R_{D^{(*)}}$

Ref.	R_D	R_{D^*}	dev. (R_D)	dev. (R_{D^*})
Exp. [HFLAV]	0.41(5)	0.304(15)	_	_
LQCD [FLAG]	0.300(8)	-	2.3σ	_
Fajfer et al. '12	0.296(16)	0.252(3)	2.3σ	3.4σ
Bigi et al. '16	0.299(3)	-	2.3σ	-
Bigi et al. '17	-	0.260(8)	-	2.6σ
Bernlochner et al. '17	0.298(3)	0.257(3)	2.4σ	3.1σ

- Larger errors in [Bigi et al.] for R_{D^*} . Good agreement for R_D .
- LQCD determination of $A_0(q^2)$ would be very helpful.
- Soft photon corrections: first steps in [de Boer et al. 2018] Disentangling structure dependent terms, important!? More work needed.

We must wait for more exp. data and more LQCD input...

EFT description of R_D and R_{D^*}

э

< ロ > < 同 > < 三 > < 三 >

Effective theory for $b \to c \tau \bar{\nu}$

$$\begin{aligned} \mathcal{L}_{\rm em} &= -2\sqrt{2} G_F \, V_{cb} \Big[(1+g_{V_L}) (\bar{c}_L \gamma_\mu b_L) (\bar{\ell}_L \gamma^\mu \nu_L) + g_{V_R} \, (\bar{c}_R \gamma_\mu b_R) (\bar{\ell}_L \gamma^\mu \nu_L) \\ &+ g_{S_R} \, (\bar{c}_L b_R) (\bar{\ell}_R \nu_L) + g_{S_L} \, (\bar{c}_R b_L) (\bar{\ell}_R \nu_L) + g_T \, (\bar{c}_R \sigma_{\mu\nu} b_L) (\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \Big] + \mathrm{h.c.} \end{aligned}$$

General messages:

• Perturbativity $\Rightarrow \Lambda_{\rm NP} \lesssim 3 \text{ TeV}$

see also [Di Luzio et al. 2017]

《曰》《卽》《臣》《臣》

- $SU(3)_c \times SU(2)_L \times U(1)_Y$ gauge invariance: $\Rightarrow g_{V_R}$ is LFU at dimension 6 ($W\bar{c}_R b_R$ vertex). \Rightarrow Four coefficients left: g_{V_L} , g_{S_L} , g_{S_R} and g_T .
- Several viable solutions to $R_{D^{(*)}}$: see e.g. [Freytsis et al. 2015] • e.g. $g_{V_L} \in (0.09, 0.13)$, but not only!

Fitting R_D and R_{D^*} : (i) (pseudo)scalar operators

 $\Rightarrow (Pseudo) \text{scalar operators in tension with } \tau_{B_c} \text{ constraint: } \mathcal{B}(B_c \to \tau \bar{\nu}) \lesssim 30\%$ [Alonso et al. 2016], see also [Akeroyd 2017]

$$\mathcal{B}(B_c \to \tau \bar{\nu}) = \frac{\tau_{B_c} m_{B_c} f_{B_c}^2 G_F^2 |V_{cb}|^2}{8\pi} m_{\tau}^2 \left(1 - \frac{m_{\tau}^2}{m_{B_s}^2}\right)^2 \left|1 + g_P \frac{m_{B_c}^2}{m_{\tau}(m_b + m_c)}\right|^2$$

Fitting R_D and R_{D^*} : (ii) scalar and tensor operators

$$\mathcal{O}_{S_L} = (\bar{c}_R b_L)(\bar{\ell}_R \nu_L)$$
$$\mathcal{O}_T = (\bar{c}_R \sigma_{\mu\nu} b_R)(\bar{\ell}_R \sigma^{\mu\nu} \nu_L)$$

 \mathcal{O}_{S_L} and \mathcal{O}_T mix via EW RGEs [Gonzáles-Alonso et al. 2017].

 $\Rightarrow R_{D^*}$ is highly sensitive to tensor contributions.

 \Rightarrow Scalar and tensor operators provide a good fit – case of scalar leptoquarks $S_1 = (\bar{3}, 1)_{1/3}$ and $R_2 = (3, 2)_{7/6}$. τ_{B_c} is not a problem here!

• <u>Several scenarios</u> can accommodate R_D and R_{D^*} .

 \Rightarrow More exp. information is needed to distinguish among them:

문▶ ★ 문▶

- Several scenarios can accommodate R_D and R_{D^*} .
- \Rightarrow More exp. information is needed to distinguish among them:
 - i) Many angular observables (e.g. $A_{\rm fb}$, au-polarization asymmetry)

[Becirevic et al. 2016], [Alonso et al. 2016]

イロト イ団ト イヨト イヨト

 \circ First measurement: $P_{ au} = -0.44 \pm 0.47^{+0.20}_{-0.17}$ [Belle, 1608.0391]

ii) Other LFUV ratios (e.g. $R_{J/\Psi}$, R_{D_s} , $R_{D_s^*}$, R_{Λ_c})

LHCb confirmed tendency in:

[LHCb, 2017]

$$R_{J/\Psi}^{\exp} = \frac{\mathcal{B}(B_c \to J/\Psi \tau \bar{\nu})}{\mathcal{B}(B_c \to J/\Psi \ell \bar{\nu})} = 0.71(17)(18)$$

 \Rightarrow Larger than SM estimates $R_{J/\Psi}^{\rm SM} \approx 0.22 - 0.28$; large exp/th errors.

혼에 세종에

LHCb confirmed tendency in:

[LHCb, 2017]

$$R_{J/\Psi}^{\exp} = \frac{\mathcal{B}(B_c \to J/\Psi \tau \bar{\nu})}{\mathcal{B}(B_c \to J/\Psi \ell \bar{\nu})} = 0.71(17)(18)$$

 \Rightarrow Larger than SM estimates $R_{J/\Psi}^{\rm SM} \approx 0.22 - 0.28$; large exp/th errors.

 \Rightarrow Useful information to distinguish among NP scenarios:

[Melic, Becirevic, Leljak, OS. to appear]

More exp. data and LQCD results are more than welcome here! See [HPQCD, 1611.01987] for preliminary LQCD results for $V(q^2)$ and $A_1(q^2)_{\Box}$, $a \ge 1$,

Olcyr Sumensari (INFN Padova)

Semileptonic *B* decays

Concrete New Physics Scenarios for $R_{D^{(*)}}$

[Fajfer et al. 2012, 2015], [Celis et al. 2012, 2016 and 2017], [De Fazio et al. 2013], [He et al. 2012], [Sakaki et al. 2013], [Bhattacharya et al. 2014], [Ghosh 2015], [Soni et al. 2015], [Bauer et al. 2015], [Ligeti et al. 2016] [Greljo et al. 2015 and 2018], [Guadagnoli et al. 2015], [Becirevic et al. 2012, 2016], [Barbieri et al. 2015 and 2017], [Li et al. 2016], [Boucenna et al. 2016], [Crivellin et al.], [Feruglio et al. 2015 and 2017] [Buttazzo et al. 2017], [Di Luzio et al. 2017], [D'Ambrosio et al. 2017], [Blanke et al. 2018], [Asadi et al. 2018], [Buttazzo 2018]...

$R_{D^{(*)}}^{\rm exp}>R_{D^{(*)}}^{\rm SM}$ require new bosons at the TeV scale:

æ

$R_{D^{(*)}}^{\exp} > R_{D^{(*)}}^{SM}$ require new bosons at the TeV scale:

Challenges for New Physics:

• Loop constraints: e.g. $\tau \to \mu \nu \bar{\nu}$, $Z \to \ell \ell$ [Feruglio et al., 2016]

See Feruglio talk

• LHC direct and indirect bounds [Greljo et al. 2015, Faroughy et al., 2016]

See Greljo talk

$R_{D^{(*)}}^{\exp} > R_{D^{(*)}}^{SM}$ require new bosons at the TeV scale:

Challenges for New Physics:

• Loop constraints: e.g. $\tau \to \mu \nu \bar{\nu}$, $Z \to \ell \ell$ [Feruglio et al., 2016]

See Feruglio talk
 LHC direct and indirect bounds [Greljo et al. 2015, Faroughy et al., 2016]
 See Greljo talk

In Summary:

- Charge Higgs solutions are in tension with τ_{B_c} constraint
- Minimal W' models: tension with high- p_T ditau constraints \Rightarrow Still viable in models with ν_R [Greljo et al. 2018, Asadi et al. 2018]
- Scalar and vector leptoquarks (LQ) are the best candidates so far.

LQ models for $R_{D^{(*)}}$

NB. w/o ν_R

Model	$g_{\rm eff}^{b\to c\tau\bar\nu}(\mu=m_\Delta)$	$R_{D^{(*)}}$
$S_1 = (\bar{3}, 1)_{1/3}$	g_{V_L} , $g_{S_L} = -4 g_T$	\checkmark
$R_2 = (3,2)_{7/6}$	$g_{S_L} = 4 g_T$	\checkmark
$S_3 = (\bar{3}, 3)_{1/3}$	g_{V_L}	×
$U_1 = (3, 1)_{2/3}$	g_{V_L}	<
$V_2 = (3, 1)_{2/3}$	g_{S_R}	×
$\widetilde{V}_2 = (\bar{3}, 2)_{-1/6}$	g_{S_L}	×
$U_3 = (3,3)_{2/3}$	g_{V_L}	×

Viable models for $R_{D^{(*)}}$:

- U_1 (g_{V_L}) , S_1 $(g_{V_L}$ and $g_{S_L} = -4 g_T)$, and R_2 $(g_{S_L} = 4 g_T \in \mathbb{C})$
- Possibility to distinguish them by using other $b \rightarrow c\ell\nu$ observables!
- Some models are excluded by other flavor constraints: $B \to K \nu \bar{\nu}$, Δm_{B_s} ...

A pattern of LFUV? Talks by Feruglio, Tetlalmatzi-Xolocotzi, Ciuchini and Mahmoudi $R_{K^{(*)}} = \mathcal{B}(B \to K^{(*)}\mu\mu)/\mathcal{B}(B \to K^{(*)}ee)$:

Experiment

 \Rightarrow Needs confirmation from Belle-II!

Theory (loop induced in SM)

- Hadronic uncertainties cancel to a large extent ⇒ Clean observables!
- QED corrections important, $R_{K^{(*)}} = 1.00(1)$, [Bordone et al. 2016]

LQ models for $R_{D^{(*)}}$ (and $R_{K^{(*)}}$)

Model	$R_{D^{(*)}}$	$R_{K^{(*)}}$	$R_{D^{(*)}} \ \& \ R_{K^{(*)}}$
$S_1 = (\bar{3}, 1)_{1/3}$	\checkmark	×	×
$R_2 = (3,2)_{7/6}$	\checkmark	X *	×
$S_3 = (\bar{3}, 3)_{1/3}$	×	\checkmark	×
$U_1 = (3,1)_{2/3}$	\checkmark	\checkmark	\checkmark
$V_2 = (3,1)_{2/3}$	×	×	×
$\widetilde{V}_2 = (\bar{3}, 2)_{-1/6}$	×	×	×
$U_3 = (3,3)_{2/3}$	×	\checkmark	×

Models for $\underline{R_{D^{(*)}} \& R_{K^{(*)}}}$:

- Building a model that can solve all anomalies is a very challenging task!
- Only U₁ can do it, but UV completion needed [Buttazzo et al. 2017]
 ⇒ Possible in Pati-Salam models: [Di Luzio et al. 2017], [Bordone et al. 2017]...
- Two scalar LQs can also do the job: S_1 and S_3 [Marzocca, 2018], R_2 and S_3 [Becirevic, Dorsner, Fajfer, Faroughy, Kosnik, OS, to appear].

Olcyr Sumensari (INFN Padova)

Summary and perspectives

æ

< ロ > < 同 > < 三 > < 三 >

Summary and Perspectives

• Important progress in understanding the uncertainties for $B \to D^* \ell \bar{\nu}$, but the V_{cb} puzzle remains.

Wait for LQCD & Belle-II data at small recoils.

- SM prediction for R_D is robust (LQCD). Hadronic uncertainties entering R_{D*} need to be better understood, but anomalies persist.
 More LQCD input necessary.
- $\circ~$ Several viable New Physics scenarios can accommodate $R_{D^{(*)}}.$ More exp. info. is needed: ang. distributions, other LFUV ratios etc.
- $\circ\,$ Building a model to simultaneously explain $R_{K^{(*)}}$ and $R_{D^{(*)}}$ remains a very challenging task.

Data driven model building!

Thank you!

æ

(日)

Back-up

æ

- 3.9σ combined deviation from the SM [theory error under control?]
- 2.2σ deviation if only R_D is considered.
- 2σ deviation in $R_{J/\Psi}(?)$

< ロ > < 同 > < 三 > < 三 >

Fitting the anomalies: R_D and R_{D^*}

э

SMEFT:

$$\begin{aligned} \mathcal{L}_{\rm em} &= -2\sqrt{2} G_F \, V_{cb} \Big[(1 + g_{V_L}) (\bar{c}_L \gamma_\mu b_L) (\bar{\ell}_L \gamma^\mu \nu_L) + g_{V_R} \, (\bar{c}_R \gamma_\mu b_R) (\bar{\ell}_L \gamma^\mu \nu_L) \\ &+ g_{S_R} \, (\bar{c}_L b_R) (\bar{\ell}_R \nu_L) + g_{S_L} \, (\bar{c}_R b_L) (\bar{\ell}_R \nu_L) + g_T \, (\bar{c}_R \sigma_{\mu\nu} b_L) (\bar{\ell}_R \sigma^{\mu\nu} \nu_L) \Big] + \text{h.c.} \end{aligned}$$

 $SU(3)_c \times SU(2)_L \times U(1)_Y$ gauge invariant operators: Warsaw basis: [Grzadkowski et al. 1008.4884]

$$C_{\ell q}^{(3)} = \left(\bar{l}_p \gamma_\mu \tau^I l_r\right) \left(\bar{q}_s \gamma^\mu \tau^I q_t\right) \qquad \Longrightarrow \qquad g_{V_L}$$

$$C_{\ell edq} = \left(\bar{l}_p^j e_r\right) \left(\bar{d}_s q_{tj}\right) \qquad \Longrightarrow \qquad g_{S_R}$$

$$C_{\ell equ}^{(1)} = (\bar{l}_p^j e_r) \epsilon_{jk} (\bar{q}_s^k u_t) \qquad \Longrightarrow \qquad g_{S_L}$$

$$C_{\ell equ}^{(3)} = \left(\bar{l}_p^j \sigma_{\mu\nu} e_r\right) \epsilon_{jk} \left(\bar{q}_s^k \sigma^{\mu\nu} u_t\right) \qquad \Longrightarrow \qquad g_T$$

æ

< ロ > < 同 > < 三 > < 三 > 、

$\underline{B \rightarrow D}$ form factors

⊒ → + ≣ →

BGL parametrization

[BGL. hep-ph:9705252,9412324,9504235]

$$f_i(z) = \frac{1}{B_i(z)\phi_i(z)} \sum_{n=0}^{\infty} a_n^i z^n$$
$$z = \frac{\sqrt{1+w} - \sqrt{2}}{\sqrt{1+w} + \sqrt{2}}, \qquad w = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_B m_{D^*}}$$

- $B \rightarrow D^*$: $z_{\rm max} = 0.056 \Rightarrow$ truncation at N = 2 is enough
- $B_i(z)$: removes poles
- $\phi_i(z)$: phase-space factors.

$$\begin{split} \langle \bar{D}^*(k,\varepsilon) | \bar{c}\gamma^{\mu} b | \bar{B}(p) \rangle &= \varepsilon^{\mu\nu\rho\sigma} \varepsilon^*_{\nu} p_{\rho} k_{\sigma} \frac{2 V(q^2)}{m_B + m_{D^*}} \,, \\ \langle \bar{D}^*(k,\varepsilon) | \bar{c}\gamma^{\mu}\gamma_5 b | \bar{B}(p) \rangle &= i \varepsilon^{*\mu} (m_B + m_{D^*}) A_1(q^2) - i(p+k)^{\mu} (\varepsilon^* \cdot q) \frac{A_2(q^2)}{m_B + m_{D^*}} \\ &- i q^{\mu} (\varepsilon^* \cdot q) \frac{2m_{D^*}}{q^2} [A_3(q^2) - A_0(q^2)] \,, \end{split}$$

Olcyr Sumensari (INFN Padova)

Semileptonic B decays

19/19

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 - のへで

		<u> </u>	
a + lattice + LCSR	CLN Fit:	Data + lattice	Data + lattice + LCSR
31.4/35	χ^2/dof	34.3/36	34.8/39
$0.0404 \left({}^{+16}_{-17} \right)$	$ V_{cb} $	0.0382(15)	0.0382(14)
0.01224(18)	$\rho_{D^*}^2$	$1.17 \begin{pmatrix} +15 \\ -16 \end{pmatrix}$	1.16(14)
$-0.052 \begin{pmatrix} +27 \\ -15 \end{pmatrix}$	$R_1(1)$	$1.391 \begin{pmatrix} +92 \\ -88 \end{pmatrix}$	1.372(36)
$1.0(^{+0}_{-5})$	$R_{2}(1)$	$0.913 \begin{pmatrix} +73 \\ -80 \end{pmatrix}$	$0.916 \begin{pmatrix} +65\\ -70 \end{pmatrix}$
$-0.0070\left(^{+54}_{-52}\right)$	$h_{A_1}(1)$	0.906(13)	0.906(13)
$0.089 \begin{pmatrix} +96 \\ -100 \end{pmatrix}$			
$0.0000(\pm 57)$			

[Bigi, Gambino.	. 1703.06124]
-----------------	---------------

see also	Grinstein.	Kobach.1703.08170

・ロト ・四ト ・ヨト ・ヨト

DOL DU	D	D I I GOD
BGL Fit:	Data + lattice	Data + lattice + LCSR
χ^2/dof	27.9/32	31.4/35
$ V_{cb} $	$0.0417 \begin{pmatrix} +20 \\ -21 \end{pmatrix}$	$0.0404 \begin{pmatrix} +16\\ -17 \end{pmatrix}$
a_0^f	0.01223(18)	0.01224(18)
a_1^f	$-0.054 \begin{pmatrix} +58\\ -43 \end{pmatrix}$	$-0.052 \begin{pmatrix} +27\\ -15 \end{pmatrix}$
a_2^f	$0.2 \begin{pmatrix} +7 \\ -12 \end{pmatrix}$	$1.0 \begin{pmatrix} +0 \\ -5 \end{pmatrix}$
$a_1^{\mathcal{F}_1}$	$-0.0100\left(^{+61}_{-56} ight)$	$-0.0070\left(^{+54}_{-52} ight)$
$a_2^{\mathcal{F}_1}$	0.12(10)	$0.089 \left(^{+96}_{-100}\right)$
a_0^g	$0.012 \left(^{+11}_{-8} \right)$	$0.0289 \left(^{+57}_{-37}\right)$
a_1^g	$0.7 \begin{pmatrix} +3 \\ -4 \end{pmatrix}$	$0.08 \begin{pmatrix} +8\\ -22 \end{pmatrix}$
a_2^g	$0.8 \begin{pmatrix} +2 \\ -17 \end{pmatrix}$	$-1.0(^{+20}_{-0})$

æ