Heavy flavour physics in heavy ions collisions at LHC

La Biodola, May the 9th 2018

Heavy flavour physics in heavy ions collisions at LHC

- □ The intriguing "small systems"
- Summary and outlook

The QCD phase transition

Lattice QCD calculations indicate that, at a *critical* temperature around 160 MeV, strongly interacting matter undergoes a phase transition to a new state where the quarks and gluons are no longer confined into hadrons

EXPONENTIAL HADRONIC SPECTRUM AND QUARK LIBERATION

βB The exponentially increasing spectrum proposed by Hagedorn is not necessarily connected with a limiting temperature, but it is present in any system which undergoes a second order phase transition. We suggest that the "observed" exponential spectrum is connected to the existence of a different phase of the vacuum in which quarks are not confined. T

N. Cabibbo and G. Parisi, Phys. Lett. B59 (1975) 67

The phase diagram of QCD, in 1975

Fig. 1. Schematic phase diagram of hadronic matter. $\rho_{\rm B}$ is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

9/05/18

Heavy flavours: hard probes of QGP

Hard probes in nucleusnucleus collisions:

- produced at the very early stage of the collisions in partonic processes with large Q²
- pQCD can be used to calculate initial cross sections
- traverse the hot and dense medium
- can be used to probe the properties of the medium

from pp to Pb-Pb collisions at LHC

The paradigm

Pb-Pb Collisions ($\sqrt{s_{NN}} = 2.76, 5 \text{ TeV}$)

- Core business: create and characterize the QGP
- Centrality

 $\bigcirc \longrightarrow \longleftarrow \bigcirc \bigcirc$

- pp Collisions ($\sqrt{s} = 0.9 13$ TeV)
- Reference data

p-Pb Collisions ($\sqrt{s_{NN}} = 5, 8 \text{ TeV}$)

- Control experiment
- "Cold nuclear matter" effects (e.g. modifications to PDF)

Nuclear modification factor

- Production of hard probes in A-A expected to scale with the number of nucleon-nucleon collisions N_{coll} (binary scaling)
 PbPb measurement
- Observable: nuclear modification factor

$$R_{AA} = \frac{1}{N_{coll}} \frac{dN_{AA}/dp_{T}}{dN_{pp}/dp_{T}} = \frac{1}{T_{AA}} \frac{dN_{AA}/dp_{T}}{d\sigma_{pp}/dp_{T}} \sim \frac{\text{QCD medium}}{\text{QCD vacuum}}$$

- □ If no nuclear effects are present $\rightarrow R_{AA} = 1$
- □ Effects from the hot and deconfined medium created in the collision → breaking of binary scaling → $R_{AA} \neq 1$
 - Parton energy loss via gluon radiation and collisions in the medium
 - Quarkonium melting in the QGP
- □ But also initial state effects (e.g. nuclear modification of PDFs) may lead to $R_{AA} \neq 1$
 - Need control data: medium-blind probes (photons, W, Z) + p-A collisions

Nuclear modification of unidentified particles

The easiest way to study "jet quenching"

G E Bruno

Nuclear modification of identified particles

light flavour vs. charm vs. beauty hadrons (or jets)

quenching vs. colour charge of partons

- heavy flavour hadron comes from quark ($C_R = 4/3$)
- light flavour from (p_T-dep) mix of quark and gluon (C_R = 3) jets

quenching vs. mass of partons
 heavy flavour predicted to suffer less energy loss
 gluonstrahlung (dead cone effect)
 collisional loss

beauty vs charm

□ Expectations: $\Delta E_g > \Delta E_q > \Delta E_c > \Delta E_b \rightarrow$ naively: $R_{AA}^h < R_{AA}^D < R_{AA}^B$ considering different p_t distributions and fragmentations:

$R_{AA}^{h} \approx R_{AA}^{D} < R_{AA}^{B}$

Mass effect of energy loss

Indication of mass dependent suppression $R_{AA}(b) > R_{AA}(c)$

- D-meson R_{AA} (ALICE) significantly smaller than the RAA of non-prompt J/ ψ (CMS)
- confirmed by more precise Run2 data by ALICE, CMS and ATLAS

Azimuthal anisotropy

M. Gehm, S. Granade, S. Hemmer, K, O'Hara, J. Thomas - Science 298 2179 (2002) 9/05/18 G E Bruno

Elliptic flow at 5 TeV: light flavour

■ Mass ordering at $p_T < 2 \text{ GeV}/c \rightarrow hydro-dynamic flow, very small viscosity$ $■ More precise Run-2 data (esp. <math>\phi$ meson) reveal baryon vs. meson grouping at higher p_T (2-6 GeV/c) \rightarrow quark-level flow + recombination?

Evidence of charm flowing with the medium at LHC

D⁰ v_2 < pion/charged particle v_2 (see also next slide)

- in agreement with CMS results (next slide)
- ALICE: also first ever measurement of D_s flow (large uncertainties)

Evidence of charm flowing with the medium at LHC

CMS has also measured the 3rd harmonic (v₃)
 sensitive to the initial geometry fluctuations and to the interaction strength between charm quarks and the medium

G E Bruno

Constraining models with charm

□ Models where charm quarks pick up collective flow via recombination and/or subsequent elastic collisions in expanding hydrodynamic medium do better at describing both R_{AA} and v_2 at low p_T (BAMPS elastic, LBT, MC@sHQ +EPOS, TAMU, POWLANG, PHSD)

Models that describe that data use:

- Diffusion coefficient $2\pi T D_s(T) \approx 1.5-7$ at critical temperature T_c
- Charm thermalization time $\tau_{charm} \sim 3-10$ fm/c

Constraining models with charm

Ongoing: theoretical effort through Bayesian analysis to calibrate model parameters via model-data comparison

Find the optimal parameters that describe R_{AA} and v₂

What about Beauty ?

□ Energy loss measured well at high p_T ■ non prompt J/ ψ , B meson, B jets, B → e+X

Collectivity of beauty ?
 likely answer only with LHC run3
 more statistics and low p_t

Hadronisation by quark coalescence ?

- hadrons can be formed by coalescence of quarks from the QGP
 - in the light sector: observation of baryon/meson enhancement
 - enhancement of strange particles
- D_s and Λ_c production relative to D⁰ sensitive to this mechanism
 - Λ_{c} : preliminary results from STAR in Au-Au at 200 GeV

9/05/18

G E Bruno

Quarkonia

Upsilon sequential dissociation

□ double ratio measured to be less than 0.26 at 95% CL for the Y(3S) □ no p_T dependence for the Y(2S) double ratio

Krouppa and Strickland: model with color-screening effects and feeddown contributions from decays of heavy quarkonia, plus hydro description (initial T of about 630 MeV) well describe data
Du et al.: kinetic rate equation (regeneration important for 2S state)

J/ψ production at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

At 2.76 TeV a significant suppression w.r.t. pp was measured: expected as an effect of colour screening (melting of the charmonium state)

- □ The suppression is smaller than at **0.2 TeV**, in central collisions and low p_T : described by models with **re-generation from c quarks in the QGP**
 - New results at 5.02 TeV: similar R_{AA} as at 2.76 TeV
 - significantly increased precision at 5.02 TeV

П

J/ψ production at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

- At 2.76 TeV a significant suppression w.r.t. pp was measured: expected as an effect of colour screening (melting of the charmonium state)
- The suppression is smaller than at **0.2 TeV**, in central collisions and low p_T : described by models with **re-generation from c quarks in the QGP**
 - New results at 5.02 TeV: similar R_{AA} as at 2.76 TeV
 - R_{AA} at low p_t much larger than at RHIC energies
 - at low p_T lower reduction (or even enhancement) at mid- than forward rapidity \rightarrow consistent with regeneration scenario

П

J/ψ elliptic flow at 5 TeV

- Unambiguous observation of non-zero J/ ψ v₂ in semi-central (20-40%) Pb-Pb collisions at 5.02 TeV for J/ ψ with 0 < p_T < 12 GeV/c
- \Box J/ ψ v₂(p_T) increases with p_T up to about 0.11 at 4 < p_T < 6 GeV/*c*

- Describe explanation: the large v_2 values measured can be achieved by including a strong J/ ψ regeneration component from recombination of thermalized charm quarks in the QGP
 - Dominant at low p_T (< 4 GeV/c), dying out at high p_T
- **D** The large values of the $J/\psi v_2$ at high p_T are a challenge to models ...

Small systems: pp and pPb

The paradigm

Pb-Pb Collisions ($\sqrt{s_{NN}} = 2.76, 5 \text{ TeV}$)

- Core business: create and characterize the QGP
- Centrality

pp Collisions ($\sqrt{s} = 0.9 - 13$ TeV)

Reference data

p-Pb Collisions ($\sqrt{s_{NN}} = 5, 8 \text{ TeV}$)

- Control experiment
- "Cold nuclear matter" effects (e.g. modifications to PDF)

Two examples within the paradigm

Upsilon production in p-Pb by ATLAS
 Prompt D⁰ and prompt J/ψ at forward and backward rapidity with p-Pb and Pb-p by LHCb

- Reduction of particle production in the "p-going" direction, where small-x gluons in the Pb nucleus are probed
 - Described by models with nuclear-PDFs or gluon saturation (CGC), or energy loss
- Essential reference for the role of these effects in Pb-Pb

Small systems: pp and pPb

Revisiting the paradigm

striking properties observed in very high multiplicity p-Pb and pp collisions at LHC, which resemble those due to collectivity/ QGP-like properties of the Pb-Pb systems

one of the major surprise at the LHC so far

low multiplicity pp (majority of events)

high multiplicity pp (very rare events)

for instance

□ CMS famous papers of 2010 (pp) and 2012 (pPb)

The intriguing small systems

Strangeness enhancement in pp!

- Among first proposed signatures of the QGP
 - Rafelski, Müller, PRL48(1982)1066
- Observed in A-A at SPS, then at RHIC and LHC

Nature Phys. 13 (2017) 535-539

New ALICE experiment results show novel phenomena in proton collisions

G E Bruno

v₂ of HF hadrons in high multiplicity p-Pb events

open HF hadrons show collectivity in small systems
 hints of smaller v₂ for charm quarks than lighter quarks

G E Bruno

Collectivity also for J/ ψ in pPb!

□ similar $J/\psi v_2$ coefficients as measured in Pb-Pb collisions

suggesting a common mechanism at the origin of the $J/\psi v_2$.

Summary, open questions and outlook

- LHC is already providing precise measurements in the HF sector
 - stringent constraints on the models describing the properties of the system (e.g., transport coefficients, η/s) and its dynamical evolution
 - Open questions:
 - □ are charm quarks fully thermalized ?
 - □ do also beauty quarks take part to collective dynamics?
 - □ how relevant is recombination/coalescence for beauty ?
- □ Small systems:
 - a new laboratory to study QCD in extreme conditions
 - how small can be a droplet of QGP and what are its properties ?

□ HF are key probes due to their short formation time

Outlook: how to answer to open questions?

with next LHC runs and thanks to detector upgrades

SPARES

Strangeness enhancement

10²

10

10³

 $< N_{wound} >$

10²

10

10³

 $< N_{wound} >$

9/05/18

G E Bruno

Evidence of charm flowing with the medium at LHC

- final results from ALICE
 much improved with respect to RUN2 data
- \Box in agreement with CMS results (covering higher p_t range)
- \square D⁰ v_2 < charged particle v_2

What about Beauty ?

□ Energy loss measured well at high p_T ■ non prompt J/ ψ , B meson, B jets, B → e+X

Collectivity of beauty ?
 likely answer only with LHC run3
 more statistics and low p_t

$\rm D_s$ and $\rm \Lambda_c$ at RHIC

□ similar results as at the LHC

Hidden versus Open charm v2

Similar magnitude
 Consistently suggesting that charm quark flows!

The LHC experiments with HI program

