

Semileptonic B decays at the B Factories

Franco Símonetto

INFN & Universita' di Padova

Muon/hadron detector
 Magnet coil
 Electron/photon detector
 Cherenkov detector

Tracking chamber
 Support tube
 Vertex detector

Franco Simonetto -INFN & Universita' di Padova

Talk Outlook

Motivations

- $\bullet~$ Semileptonic decays provide the most precise determinations of $\bigvee_{xb}{(x=c,u)}$
- $|V_{cb}|$ sets the scale for :
 - a unitarity triangle
 - FCNC $\propto |V_{tb}V_{ts}| \approx |V_{cb}|^2 [1 + O(\lambda^2)]$
 - Kaon CP $\epsilon_K \approx x |V_{cb}|^2 + \dots$
- |V_{ub}/V_{cb} |
 - the side opposite to sin $2\phi_1$
- $B \rightarrow D^{(*)} \tau v \text{ test}$:
 - 3rd generation coupling
 - New form factor

- Larger sensitivity to new Physics effects ?

Experimental tools : tagged events

• Fully reconstruct the tag B in more than 1000 hadronic final states

• (almost) unbiased measurement side, with :

 $P^{\mu}_{Meas} = P^{\mu}_{Y(4S)} - P^{\mu}_{Tag}$

- $B \rightarrow \ell_V D / \pi$: full v reconstruction
- $B \rightarrow \ell_{v} X$: improved bck rejection, partial reconstruction of the event
- Belle (only):
 - Hierarchical Neuro Based algo improves tag perfomances by ~ x 2

- ε ~ 0.5 % (B⁺) - ε ~ 0.3 % (B⁰)

Blue points : HNB selection Red points : old selection

Theoretical tools

$$\Gamma = |V_{cb}|^2 \frac{G_F^2 m_b^5(\mu)}{192\pi^3} (1 + A_{\rm ew})$$

Trivial diagram, as for μ decay

Theoretical tools

 ${\sf H}{\sf adronization} \text{ and other } {\sf QCD} \ {\sf Effects}:$

- Inclusive decays $(B \rightarrow \ell v X_{c/u})$
 - Operator Product Expansion in $\alpha_{\!_{s}} \, \text{and} \, \Lambda_{\text{QCD}} \, / \, m_{b,c}$
- Exclusive decays $(B \rightarrow \ell \nu D^{(*)} / \pi)$
 - Form factors from Lattice QCD, Light Cone Sum Rules
- Fit measured spectra to reduce theoretical errors

- Sizable QCD corrections to simple spectator model $\Gamma = |V|$
- Computed with OPE + pQCD
 expansion in powers of :

- α_s

$$\begin{split} V_{cb}|^{2} \frac{G_{F}^{2} m_{b}^{5}(\mu)}{192\pi^{3}} (1 + A_{ew}) \times \\ z_{0}^{(0)}(r) + \frac{\alpha_{s}(\mu)}{\pi} z_{0}^{(1)}(r) + \left(\frac{\alpha_{s}(\mu)}{\pi}\right)^{2} z_{0}^{(2)}(r) + \cdot \\ + \frac{\mu_{\pi}^{2}}{m_{b}^{2}} \left(z_{2}^{(0)}(r) + \frac{\alpha_{s}(\mu)}{\pi} z_{2}^{(1)}(r) + \cdots\right) \\ + \frac{\mu_{G}^{2}}{m_{b}^{2}} \left(y_{2}^{(0)}(r) + \frac{\alpha_{s}(\mu)}{\pi} y_{2}^{(1)}(r) + \cdots\right) \\ + \frac{\rho_{D}^{3}}{m_{b}^{3}} \left(z_{3}^{(0)}(r) + \frac{\alpha_{s}(\mu)}{\pi} z_{3}^{(1)}(r) + \cdots\right) \\ + \frac{\rho_{LS}^{3}}{m_{b}^{3}} \left(y_{3}^{(0)}(r) + \frac{\alpha_{s}(\mu)}{\pi} y_{3}^{(1)}(r) + \cdots\right) + \ldots \right] \end{split}$$

$$\begin{split} \overline{\Lambda} &= M_B - m_b \,, \\ \mu_{\pi}^2 &= -\langle B | \bar{b} (iD_{\perp})^2 b | B \rangle \,, \\ \mu_G^2 &= \langle B | \bar{b} (iD_{\perp}^{\mu}) (iD_{\perp}^{\nu}) \sigma_{\mu\nu} b | B \rangle \,, \\ \rho_D^3 &= \langle B | \bar{b} (iD_{\perp\mu}) (ivD) (iD_{\perp}^{\nu}) b | B \rangle \,, \\ \rho_{\rm LS}^3 &= \langle B | \bar{b} (iD_{\perp}^{\mu}) (ivD) (iD_{\perp}^{\nu}) \sigma_{\mu\nu} b | B \rangle \end{split}$$

$|V_{cb}|$ from $b \rightarrow X_c \ell v$: theory

- Sizable QCD corrections to simple spectator model
- Computed with OPE + pQCD
 expansion in powers of :

- . **Ω**_s

- $1/m_{b}, 1/m_{c}$
- Fit to <u>spectra</u> allows the determination of unknown operators
- Fit in fact <u>moments</u> to smooth resonances away

$$\begin{split} \Gamma = &|V_{cb}|^2 \frac{G_F^2 m_b^5(\mu)}{192\pi^3} (1 + A_{ew}) \times \\ & \left[z_0^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} z_0^{(1)}(r) + \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 z_0^{(2)}(r) + \cdots \right. \\ & + \frac{\mu_\pi^2}{m_b^2} \left(z_2^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} z_2^{(1)}(r) + \cdots \right) \right. \\ & + \frac{\mu_G^2}{m_b^2} \left(y_2^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} y_2^{(1)}(r) + \cdots \right) \\ & + \frac{\rho_D^3}{m_b^3} \left(z_3^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} z_3^{(1)}(r) + \cdots \right) \\ & + \frac{\rho_{LS}^3}{m_b^3} \left(y_3^{(0)}(r) + \frac{\alpha_s(\mu)}{\pi} y_3^{(1)}(r) + \cdots \right) + \ldots \right] \end{split}$$

$$\begin{split} \overline{\Lambda} &= M_B - m_b \,, \\ \mu_{\pi}^2 &= -\langle B | \overline{b} (iD_{\perp})^2 b | B \rangle \,, \\ \mu_G^2 &= \langle B | \overline{b} (iD_{\perp}^{\mu}) (iD_{\perp}^{\nu}) \sigma_{\mu\nu} b | B \rangle \,, \\ \rho_D^3 &= \langle B | \overline{b} (iD_{\perp\mu}) (ivD) (iD_{\perp}^{\nu}) b | B \rangle \,, \\ \rho_{\rm LS}^3 &= \langle B | \overline{b} (iD_{\perp}^{\mu}) (ivD) (iD_{\perp}^{\nu}) \sigma_{\mu\nu} b | B \rangle \end{split}$$

1600

Belle

1400

- ℓ moments in B rest frame (instead of Y(4S))
- X_c moments from residual hadrons in the event

Hadron

(Intagged measurements : large data size

9

$|V_{cb}|$ from $b \rightarrow X_c \ell v$: results

• HFLAV averages :

Circles : BABAR Squares : Belle Triangles : LEP, CLEO

Br(B -> X _c lnu) (%)	V _{cb} (10 ⁻³)	m _b ^{kin} (GeV)	mu ² pi (GeV ²)
10.65 +/- 0.16	42.19 +/- 0.78	4.554 +/- 0.018	0.464 +/- 0.076

• HFLAV averages :

Br(B -> X _c lnu) (%)	V _{cb} (10 ⁻³)	m _b ^{kin} (GeV)	mu ² pi (GeV ²)
10.65 +/- 0.16	42.19 +/- 0.78	4.554 +/- 0.018	0.464 +/- 0.076

$|V_{cb}|$ from $B \rightarrow D^{(*)}\ell\nu$: theory

$$\frac{d\Gamma}{dw}(\bar{B} \to D^* \ell \bar{\nu}_\ell) = \frac{G_F^2 m_B^5}{48\pi^3} |V_{cb}|^2 (w^2 - 1) \stackrel{\alpha}{\longrightarrow} \frac{1}{2} (w^2 - 1) \frac{1}{2} (w^2 - 1$$

• ... where :

$$- w = v_B^{\mu} v_{\mu D} = \frac{m_B^2 - m_D^2 - q^2}{2m_B m_D} = \gamma_D (B \text{ rest frame})$$

- , w mapped onto $z(w) = (\sqrt{w+1} - \sqrt{2})/(\sqrt{w+1} + \sqrt{2})$

- $\mathcal{F}(w)$ represent the (unknown) form factors
 - Power series expansions zⁿ
 - HQET: bounds between parameters

- LQCD:
$$F(1) = 1 + O(\frac{m_B - m_D}{m_B + m_D} \frac{\Lambda_{QCD}}{m_c}) = 1 + O(\%)$$

• Extraplation to w=1 provides $F(1) \cdot |V_{cb}|$

$|V_{cb}|$ from $B \rightarrow D^{(*)}\ell\nu$: theory

$$\frac{d\Gamma}{dw}(\bar{B} \to D^* \ell \bar{\nu}_{\ell}) = \frac{G_F^2 m_B^5}{48\pi^3} |V_{cb}|^2 (w^2 - 1) \stackrel{\alpha}{\longrightarrow} \frac{1}{2} (w^2 - 1) \frac{1}{2} \frac{1}{2} \left(\frac{1}{2} (w^2 - 1) \right)^2 \text{ Form Factors}$$

20

- D (pseudoscalar):
 - . $\alpha = 3/2$: helicity suppression near w = 1
 - One form factor : $\mathcal{G}(z) = \mathcal{G}(1)(1 8\rho^2 z + (51\rho^2 10)z^2 (252\rho^2 84)z^3)$

Form Factors from : Caprini, Lellouch, Neubert (CLN) Nucl.Phys.B530, 153 (1998):

Use Heavy Quark Symmetry to constrain higher oder parameters

V_{cb} | from B \rightarrow D^(*) ℓv : theory

$$\frac{d\Gamma}{dw}(\bar{B} \to D^* \ell \bar{\nu}_\ell) = \frac{G_F^2 m_B^5}{48\pi^3} |V_{cb}|^2 (w^2 - 1) \stackrel{\text{O}}{\longrightarrow} \underbrace{P(w)}_{P(w)} \eta_{ew} \underbrace{\mathcal{F}(w)}_{P(w)}^2 \text{ Form Factors}$$

- D (pseudoscalar):
 - . $\alpha = 3/2$: helicity suppression near w=1
 - One form factor: $\mathcal{G}(z) = \mathcal{G}(1)(1 8\rho^2 z + (51\rho^2 10)z^2 (252\rho^2 84)z^3)$

- D* (vector)
 - . α = 1/2 : larger event rate near end point
 - Three helicity amplitudes (f.f.):

00

Form Factors from : Caprini, Lellouch, Neubert (CLN) Nucl.Phys.B530, 153 (1998)

$$egin{array}{rll} h_{A_1}(w)&=&h_{A_1}(1)igg[1-8
ho^2z+(53
ho^2-15)z^2\,-(231
ho^2-91)z^3\ R_1(w)&=&R_1(1)-0.12(w-1)+0.05(w-1)^2\ R_2(w)&=&R_2(1)+0.11(w-1)-0.06(w-1)^2 \end{array}$$

Angular analysis, in addition to w, to determine R₁, R₂

$|V_{cb}|$ from $B \rightarrow D\ell\nu$:measurements O

- State of art : tagged events
 - Improve kinematic
 - Reduce D* background (with missed π/γ)
- BABAR (PRL 104:011802 (2010))
 - 460 MBB, 3200 signal events
- Belle (PRD93:032006 (2016))
 - 770 MBB, 17000 sígnal events
- Signal tag : (missing mass)² (= m_v^2)

Franco Simonetto -INFN & Universita' di Padova

$|V_{cb}|$ from $B \rightarrow D\ell v$:results

 $B \rightarrow D\ell \nu_{\ell}$

 42.29 ± 1.37 1.09 ± 0.05

 40.12 ± 1.34

0.69

						1 A A A A A A A A A A A A A A A A A A A		
	$B^- ightarrow D^0 \ell^- ar{ u}_\ell$	$\overline B{}^0 o D^+ \ell^- ar u_\ell$	$\overline{B} \to D\ell^- \bar{\nu}_\ell$		$B^+ ightarrow ar{D}^0 e^+ u_e$	$B^+ \rightarrow \bar{D}^0 \mu^+ \nu_\mu$	$B^0 \to D^- e^+ \nu_e$	$B^0 \rightarrow D^- \mu^+ \nu_\mu$
$\mathcal{G}(1) V_{cb} \cdot 10^3$	$41.7{\pm}2.1$ ${\pm}1.3$	$45.6 \pm 3.3 \pm 1.6$	$43.0 \pm 1.9 \pm 1.4$	$\eta_{ m EW} {\cal G}(1) V_{cb} [10^{-3}]$	42.31 ± 1.94	45.48 ± 1.96	41.84 ± 2.14	42.99 ± 2.18
ρ^2	$1.14 \pm 0.11 \pm 0.04$	$1.29 \pm 0.14 \pm 0.05$	$1.20\pm0.09\pm0.04$	$ ho^2$	1.05 ± 0.08	1.22 ± 0.07	1.01 ± 0.10	1.08 ± 0.10
$\rho_{\rm corr}$ γ^2/ndf	0.943	0.950	0.952	Correlation	0.81	0.77	0.85	0.84
Signal Yield	2147 ± 69	$\frac{0.070}{1108 \pm 45}$	-	$\eta_{\rm EW} V_{cb} [10^{-3}]$	40.14 ± 1.86	43.15 ± 1.89	39.69 ± 2.05	40.78 ± 2.09
mcy	$(1.99 \pm 0.02) \times 10^{-4}$	$(1.09 \pm 0.02) \times 10^{-4}$	-	$\chi^2/n_{ m df}$	2.19/8	2.71/8	9.65/8	4.36/8
	$(2.31 \pm 0.08 \pm 0.09)\%$	$(2.23 \pm 0.11 \pm 0.11)\%$	$(2.17 \pm 0.06 \pm 0.09)\%$	Prob.	0.97	0.95	0.29	0.82

$$\mathcal{G}(1) = 1 + \mathcal{O}\left(\frac{m_B - m_D}{m_B + m_D} \frac{\Lambda_{\rm QCD}}{m_c}\right) = 1.054 \pm 0.004 \pm 0.008$$

FNAL Lattice & MILC Coll. PhysRevD92, 034506 (2015)

Franco Simonetto -INFN & Universita' di Padova

$|V_{cb}|$ from $B \rightarrow D\ell\nu$:results

	$B^- ightarrow D^0 \ell^- ar{ u}_\ell$	$\overline B{}^0 o D^+ \ell^- ar u_\ell$	$\overline{B} \to D \ell^- \bar{\nu}_\ell$
$ \mathcal{G}(1) V_{cb} \cdot 10^3$	$41.7{\pm}2.1$ ${\pm}1.3$	$45.6 \pm \ 3.3 \pm 1.6$	$43.0 \pm 1.9 \pm 1.4$
$ ho^2$	$1.14 \pm 0.11 \pm 0.04$	$1.29{\pm}~0.14{\pm}0.05$	$1.20\pm0.09{\pm}0.04$
$ ho_{ m corr}$	0.943	0.950	0.952
χ^2/ndf	3.4/8	5.6/8	9.9/18
Signal Yield	2147 ± 69	1108 ± 45	-
incy	$(1.99 \pm 0.02) \times 10^{-4}$	$(1.09 \pm 0.02) imes 10^{-4}$	-
	$(2.31 \pm 0.08 \pm 0.09)\%$	$(2.23 \pm 0.11 \pm 0.11)\%$	$(2.17 \pm 0.06 \pm 0.09)\%$
	•		

	-		-		
	$B^+ \to \bar{D}^0 e^+ \nu_e$	$B^+ o ar{D}^0 \mu^+ u_\mu$	$B^0 \to D^- e^+ \nu_e$	$B^0 ightarrow D^- \mu^+ u_\mu$	$B\to D\ell\nu_\ell$
$\eta_{ m EW} {\cal G}(1) V_{cb} [10^{-3}]$	42.31 ± 1.94	45.48 ± 1.96	41.84 ± 2.14	42.99 ± 2.18	42.29 ± 1.37
$ ho^2$	1.05 ± 0.08	1.22 ± 0.07	1.01 ± 0.10	1.08 ± 0.10	1.09 ± 0.05
Correlation	0.81	0.77	0.85	0.84	0.69
$\eta_{\rm EW} V_{cb} [10^{-3}]$	40.14 ± 1.86	43.15 ± 1.89	39.69 ± 2.05	40.78 ± 2.09	40.12 ± 1.34
$\chi^2/n_{ m df}$	2.19/8	2.71/8	9.65/8	4.36/8	4.***/0
Prob.	0.97	0.95	0.29	0.82	0 2

$$\mathcal{G}(1) = 1 + \mathcal{O}\left(\frac{m_B - m_D}{m_B + m_D} \frac{\Lambda_{\rm QCD}}{m_c}\right) = 1.054 \pm 0.004 \pm 0.008$$

FNAL Lattice & MILC Coll. PhysRevD92, 034506 (2015)

$$|V_{cb}| = (39.18 \pm 0.94 \pm 0.36) \times 10^{-3}$$

Franco Simonetto -INFN & Universita' di Padova

Franco Simonetto -INFN & Universita' di Padova

Franco Simonetto -INFN & Universita' di Padova

HFLAV quotes :

 $|V_{cb}| = (38.71 \pm 0.47_{exp} \pm 0.59_{th}) \times 10^{-3} \quad B \to D^* \ell v$

 ρ^2

b)

CLEO

B-factories + LEP + CLEO average :

 $\eta_{\rm EW} \mathcal{F}(1) |V_{cb}| = (35.61 \pm 0.43) \times 10^{-3} ,$ $\rho^2 = 1.205 \pm 0.026$, $R_1(1) = 1.404 \pm 0.032$, $R_2(1) = 0.854 \pm 0.020$,

With:

 $\eta_{\rm ew} = 1.0066 \pm 0.0050$ Bailey et al., FNAL+MILC coll. $\mathcal{F}(1) = 0.906 \pm 0.013,$ Phys.Rev.D89,114504(2014)

HFLAV quotes :

 $\Delta \chi^2 = 1$

 $|V_{cb}| = (38.71 \pm 0.47_{exp} \pm 0.59_{th}) \times 10^{-3}$ $B \rightarrow D^* \ell \nu$ $|V_{cb}| = (39.18 \pm 0.94 \pm 0.36) \times 10^{-3}$ $B \rightarrow D\ell v$

 $|V_{cb}|$ from $B \rightarrow D^* \ell v : \underline{summary}$

 $\eta_{\rm EW} \mathcal{F}(1) |V_{cb}| = (35.61 \pm 0.43) \times 10^{-3} ,$ $\rho^2 = 1.205 \pm 0.026 ,$ $R_1(1) = 1.404 \pm 0.032 ,$ $R_2(1) = 0.854 \pm 0.020 ,$

With :

 $\eta_{\text{ew}} = 1.0066 \pm 0.0050$ $\mathcal{F}(1) = 0.906 \pm 0.013$, Bailey et al., FNAL+MILC coll. Phys.Rev.D89,114504(2014)

HFLAV quotes :

$$\begin{aligned} |V_{cb}| &= (38.71 \pm 0.47_{exp} \pm 0.59_{th}) \times 10^{-3} & B \to D^* \ell \nu \\ |V_{cb}| &= (39.18 \pm 0.94 \pm 0.36) \times 10^{-3} & B \to D \ell \nu \end{aligned}$$
$$\begin{aligned} |V_{cb}| &= (42.19 \pm 0.78) \times 10^{-3} & B \to X_c \ell \nu \end{aligned}$$

|V_{cb}| tension ?

- New Belle D* <u>tagged</u> analysis, with about 2000 signal events
- Consistent with (but less precise than) untagged results
- Províde UNFOLDED data

Parameter	folded result	unfolded result	World Average
$ V_{cb} \times 10^3$	37.4 ± 1.3	38.2 ± 1.5	39.2 ± 0.7
$ ho_{D^*}^2$	1.04 ± 0.13	1.17 ± 0.15	1.21 ± 0.03
$R_{1}(1)$	1.38 ± 0.07	1.39 ± 0.09	1.40 ± 0.03
$R_{2}(1)$	0.86 ± 0.10	0.91 ± 0.08	0.85 ± 0.02

- New Belle D* <u>tagged</u> analysis, with about 2000 signal events
- Consistent with (but less precise than) untagged results
- Provide UNFOLDED data

Parameter	folded result	unfolded result	World Average
$ V_{cb} \times 10^3$	37.4 ± 1.3	38.2 ± 1.5	39.2 ± 0.7
$ ho_{D^*}^2$	1.04 ± 0.13	1.17 ± 0.15	1.21 ± 0.03
$R_{1}(1)$	1.38 ± 0.07	1.39 ± 0.09	1.40 ± 0.03
$R_{2}(1)$	0.86 ± 0.10	0.91 ± 0.08	0.85 ± 0.02

- Fit unfolded Belle data, <u>relaxing</u> <u>constraints</u> from HQS:
 - $|V_{cb}| \times 10^3 = 38.2 \pm 1.5$ CLN param. $|V_{cb}| \times 10^3 = 41.7 \pm 2.0$ BGL param.
- "Strong possibility that the tension between inclusive & exclusive $V_{\rm cb}$... is

due to CLN parameterization"

Grinstein, Kobach PLB771 (2017) 359-364

- New Belle D* <u>tagged</u> analysis, with about 2000 signal events
- Consistent with (but less precise than) untagged results
- Provide UNFOLDED data

Parameter	folded result	unfolded result	World Average
$ V_{cb} \times 10^3$	37.4 ± 1.3	38.2 ± 1.5	39.2 ± 0.7
$ ho_{D^*}^2$	1.04 ± 0.13	1.17 ± 0.15	1.21 ± 0.03
$R_{1}(1)$	1.38 ± 0.07	1.39 ± 0.09	1.40 ± 0.03
$R_{2}(1)$	0.86 ± 0.10	0.91 ± 0.08	0.85 ± 0.02

- Fit unfolded Belle data, <u>relaxing</u> <u>constraints</u> from HQS:
 - $|V_{cb}| \times 10^3 = 38.2 \pm 1.5$ CLN param. $|V_{cb}| \times 10^3 = 41.7 \pm 2.0$ BGL param.
- "The central values of the BGL,..., suggest possibly large deviations from heavy quark symmetry."

Bernlochner et al. PhysRevD.96.091503

25

|V_{ub}|from inclusive decays

- $\frac{\Gamma(b \to c \ell \nu)}{\Gamma(b \to u \ell \nu)} \approx 50$
- Need hard cuts to reduce charm background
- Select tiny fraction of the space phase, described by a "shape function"
- Large uncertainties from extrapolation to full space phase : $|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(\overline{B} \to X_u \ell \bar{\nu})}{\tau_B \Delta \Gamma_{\text{theory}}}}$

An example : tagged measurement

White : $B \rightarrow X_u \ell v$ signal

Grey : $B \rightarrow X_c \ell v$ + fakes + cascade Cyan : signal feed down

600 3000 M_x<1.7 GeV (c) (d) (a) GeV 1000 Entries/bin Entries/bir 400 2000 Entries/0. 500 200 1000 0 0 0 M_x<1.7 GeV 200 GeV Entries/0.31 GeV 300 200 GeV 200 Entries/0.1 100 Entries/2 100 100 0 0 -100 20 2.5 10 2 1.5 M_v(GeV) q²(GeV²) p^{*}_ℓ(GeV)

Phys.Rev. D86 (2012) 032004

$|V_{ub}|$ from $B \rightarrow \ell \nu \pi$

• Untagged analysis: $\vec{p}_v = \vec{p}_{miss}$

 Tagged analysis: use kinematic constraints

- Measurements performed in q^2 bins
- Results from different measurements combined in a single distribution
- Theory constraints:
 - LQCD at high q^2

FNAL/MILC EurPhysJ C77(2017)2,112

- $LCSR at q^2 = 0$

Bharucha JHEP 1205(2012)092

• FF parameterization as in :

Bourrely, Caprini, Lellouch, PRD79, 013008 (2009)

$$f_+(q^2,ec b) = rac{1}{1-q^2/m_{B^*}^2} \, \sum_{k=0}^K b_k(t_0) \, z(q^2)^k$$

Parameter	Value
$ V_{ub} $	$(3.65 \pm 0.14) \times 10^{-3}$
b_1^+	0.421 ± 0.017
b_2^+	-0.390 ± 0.033
b_3^+	-0.650 ± 0.126

V_{ub} / V_{cb} inclusive vs exclusive

- Heavy lepton :
 - One more Form Factor (no exp. constraint, use LQCD)
 - Reduced Phase space
 - Focus on semileptonic τ decays
 - Lower event rate: $\frac{\Gamma(B \rightarrow X_c \tau \bar{\nu}) \times B(\tau \rightarrow l \nu \bar{\nu}_l)}{\Gamma(B \rightarrow X_c l \bar{\nu})} \simeq \frac{1}{5} \times 0.34 \simeq 7\%$

- Heavy lepton :
 - One more Form Factor (no exp. constraint, use LQCD)
 - Reduced Phase space
 - Focus on semileptonic τ decays
 - Lower event rate: $\frac{\Gamma(B \rightarrow X_c \tau \bar{\nu}) \times B(\tau \rightarrow l \nu \bar{\nu}_l)}{\Gamma(B \rightarrow X_c l \bar{\nu})} \simeq \frac{1}{5} \times 0.34 \simeq 7\%$
- Therefore:
 - Only exclusive decays
 - Only tagged events
 - Belle : use also semileptonic tag

- Heavy lepton :
 - One more Form Factor (no exp. constraint, use LQCD)
 - Reduced Phase space
 - Focus on semileptonic τ decays

- Lower event rate: $\frac{\Gamma(B \rightarrow X_c \tau \bar{\nu}) \times B(\tau \rightarrow l \nu \bar{\nu}_l)}{\Gamma(B \rightarrow X_c l \bar{\nu})} \simeq \frac{1}{5} \times 0.34 \simeq 7\%$

• Therefore:

- Only exclusive decays
- Only tagged events
- Belle : use also semileptonic tag

- Large missing mass (three neutrinos)
- Softer lepton momentum
- Residual energy (apart B_{TAG} , $D^{(*)} \tau$)

- Heavy lepton :
 - One more Form Factor (no exp. constraint, use LQCD)
 - Reduced Phase space
 - Focus on semileptonic τ decays

- Lower event rate: $\frac{\Gamma(B \rightarrow X_c \tau \bar{\nu}) \times B(\tau \rightarrow l \nu \bar{\nu}_l)}{\Gamma(B \rightarrow X_c l \bar{\nu})} \simeq \frac{1}{5} \times 0.34 \simeq 7\%$

• Therefore:

- Only exclusive decays Large missing mass (three neutrinos)
- Only tagged events

- Softer lepton momentum
- Belle : use also semileptonic tag Residual energy (apart B_{TAG} , $D^{(*)}\tau$) Measure ratios : $R(D^{(*)}) = \frac{\Gamma(B \rightarrow X_c \tau \overline{\nu}) \times B(\tau \rightarrow l \nu \overline{\nu}_l)}{\Gamma(B \rightarrow X_c l \overline{\nu}_l)}$

Franco Simonetto -INFN & Universita' di Padova

$B \rightarrow D^* \tau v_{\tau}$: results

• Combined measurement of R(D) and $R(D^*) \sim 4 \sigma$ away from SM!

Conclusions (1)

- Semileptonic B decays are studied since more than 30 years
- Despite noticeable progressess
 - Sofisticated detectors, huge event size, tagged analysis, MVA discriminators
 - Precise LQCD, HQE, HQET, LCSR calculations
- ... still many inconsistencies around :
 - Inclusive vs exclusive V_{cb}
 - Inclusive vs exclusive V_{ub}
 - $R(D^{(*)})$
 - $\Sigma i B(\ell v D_i) < B(\ell v X_c)$ (not discussed here)

UT fits prefer :

- Inclusive V_{cb}
- Exclusive V_{ub}

(that's not the way we want to play it)

- Exclusive V_{cb} :
 - Reanalysis of high statistics data set with alternative parameterizations of FF
 - Complete angular analysis on 4d space instead of fit to projections
- Inclusive V_{ub} :
 - Improve control of $B \rightarrow X_c \ell v$ background
 - Consistent use of signal and background models in extracting results
- $R(D^{(*)})$:
 - Improve understanding of $B \rightarrow \ell \nu D^{**} (\rightarrow Dnh)$ background
 - ... hints of new Physics ?

$$\begin{split} \langle D^* | \, \bar{c} \gamma^{\mu} b \, | \overline{B} \rangle &= i \sqrt{m_B m_{D^*}} \, h_V \, \varepsilon^{\mu \nu \alpha \beta} \, \epsilon^*_{\nu} v'_{\alpha} v_{\beta} \,, \\ \langle D^* | \, \bar{c} \gamma^{\mu} \gamma^5 b \, | \overline{B} \rangle &= \sqrt{m_B m_{D^*}} \left[h_{A_1} (w+1) \epsilon^{*\mu} \right. \\ &\left. - h_{A_2} (\epsilon^* \cdot v) v^{\mu} - h_{A_3} (\epsilon^* \cdot v) v'^{\mu} \right] \end{split}$$

• <u>Exact</u> Heavy Quark Symmetry : $h_V = h_{Ai} = Z(w)$ (sgur Wise function)

• HQS bounds:

$$R_{1}(w) = \frac{h_{V}}{h_{A_{1}}}, \qquad R_{2}(w) = \frac{h_{A_{3}} + r_{D^{*}}h_{A_{2}}}{h_{A_{1}}} = 1 + \mathcal{O}(\Lambda_{\text{QCD}}/m_{c,b}, \alpha_{s})$$
$$h_{A_{1}}(w) = h_{A_{1}}(1) \left[1 - 8\rho_{D^{*}}^{2}z + (53. c_{D^{*}} - 15.)z^{2}\right], \qquad c_{D^{*}} = \rho_{D^{*}}^{2}$$

	CLN	CLNnoR	noHQS	BGL
$ V_{cb} \times 10^3$	38.2 ± 1.5	41.5 ± 1.9	41.8 ± 1.9	41.5 ± 1.8
$ ho_{D^*}^2$	1.17 ± 0.15	1.6 ± 0.2	1.8 ± 0.4	1.54 ± 0.06
c_D*	$ ho_{D^*}^2$	$ ho_{D^*}^2$	2.4 ± 1.6	fixed: $15./53.$
$R_{1}(1)$	1.39 ± 0.09	0.36 ± 0.35	0.48 ± 0.48	0.45 ± 0.28
$R_{2}(1)$	0.91 ± 0.08	1.10 ± 0.19	0.79 ± 0.36	1.00 ± 0.18
$R_1'(1)$	fixed: -0.12	5.1 ± 1.8	4.3 ± 2.6	4.2 ± 1.2
$R_2'(1)$	fixed: 0.11	-0.89 ± 0.61	0.25 ± 1.3	-0.53 ± 0.42
χ^2 / ndf	35.2 / 36	27.9 / 34	27.6 / 33	27.7 / 34

Bernlochner et al. PhysRevD.96.091503

$$\langle D^* | \, \bar{c} \gamma^{\mu} b \, | \overline{B} \rangle = i \sqrt{m_B m_{D^*}} \, h_V \, \varepsilon^{\mu\nu\alpha\beta} \, \epsilon^*_{\nu} v'_{\alpha} v_{\beta} \,, \langle D^* | \, \bar{c} \gamma^{\mu} \gamma^5 b \, | \overline{B} \rangle = \sqrt{m_B m_{D^*}} \left[h_{A_1} (w+1) \epsilon^{*\mu} \right. \left. - h_{A_2} (\epsilon^* \cdot v) v^{\mu} - h_{A_3} (\epsilon^* \cdot v) v'^{\mu} \right]$$

• <u>Exact</u> Heavy Quark Symmetry : $h_V = h_{Ai} = Z(w)$ (sgur Wise function)

• HQS bounds:

$$R_{1}(w) = \frac{h_{V}}{h_{A_{1}}}, \qquad R_{2}(w) = \frac{h_{A_{3}} + r_{D^{*}}h_{A_{2}}}{h_{A_{1}}} = 1 + \mathcal{O}(\Lambda_{\text{QCD}}/m_{c,b}, \alpha_{s})$$
$$h_{A_{1}}(w) = h_{A_{1}}(1) \left[1 - 8\rho_{D^{*}}^{2}z + (53. c_{D^{*}} - 15.)z^{2} \right].$$