

Angular Analyses of b→sµ⁺µ⁻ transitions at CMS

Dayong Wang Peking University, Beijing, China (for CMS Collaboration)

BEAUTY2018@La Biodola, May 6-11 2018

Dayong Wang

(√)

- $\mathcal{O}_9\sim (ar{s_L}\gamma^\mu b_L)(ar{\ell}\gamma_\mu\ell)$
- ${\cal O}_{10}\sim (ar{s_L}\gamma^\mu b_L)(ar{\ell}\gamma_5\gamma_\mu\ell)$

 $\mathcal{O}_{S,P}\sim (ar{s}b)_{S,P}(ar{\ell}\ell)_{S,P}$ 2018/5/10 BEAUTY2018

clean exp signature; robust theory calc; high sensitivity

Dayong Wang

CMS is marvelous for HF studies

CMS

recorded: 2012-Nov-30 07

- Flexible triggers
- Large silicon tracker
- Strong magnetic field
- Broad acceptance
- Superb muon systems
 - Three different devices, coverage up to |η|<2.4
 - Dimuon mass resolution ~0.6-1.5% (depending on |y|).
 - General fake rate ≤1%
 - ≤0.1% for pi,K; ≤0.05% for proton with a tight muon ID

In this talk: results based on ~20fb ⁻¹	data from 2012(8TeV)					
$B^0 \rightarrow K^{*0}\mu^+\mu^-$: A_{FB} , F_L and BF	Phys. Lett. B 753, 424 (2016).					
$B^0 \rightarrow K^{*0}\mu^+\mu^-$: P1, P5' arxiv: 1710.02846, Phys. Lett. B (2018)						
$B^+ \rightarrow K^+ \mu^+ \mu^- : A_{FB}, F_H$ CMS-BF	PH-15-001					
See also talks:						
	Manzoni, Fedi, Ronchese, Guisa	ao, Ozcelik, Boletti				
	 S. Fiorendi talk for HL-LHC aspe 	ects				
2018/5/10 BEAUTY2018	Davong Wang	3				

Complete description of the decay rate: 11 variables!

Simplified decay rates and parameters

 F_L :Fraction of longitudinal polarization ofthe K* A_{FB} :Forward-backward asymmetry of thedilepton system

CMS 8TeV Results

6

0L 0

2

Combined results 7/8TeV

12

14

18

 q^2 (GeV²)

16

Phys. Lett. B 753, 424 (2016).

The CMS measurements are consistent with the other results, with comparable or higher precision.

- •BaBar: Phys. Rev. D 86 (2012) 032012,
- •Belle: Phys. Rev. Lett. 103 (2009) 171801
- •CDF: Phys. Rev. Lett. 108 (2012) 081807

Phys. Rev. Lett. 106 (2011) 161801

•LHCb (3 fb⁻¹): JHEP 08 (2013) 131

4

6

8

10

$B^0 \rightarrow K^{*0} \ \mu^+\mu^-$: angular observables of P1, P5'

- Several B anomalies point to discrepancy with SM at ~3sigma
- Form-factor independent observables P5', P1 could be checked by CMS
- > Folding the pdf around $\Phi=0$ and $\theta_l=\pi/2$

S-wave and S&P-wave interference

$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{dq^2 d\cos\theta_l d\cos\theta_K d\phi} = \frac{9}{8\pi} \left\{ \frac{2}{3} \left[(F_{\rm S} + A_{\rm S}\cos\theta_{\rm K}) \left(1 - \cos^2\theta_l\right) + A_{\rm S}^5 \sqrt{1 - \cos^2\theta_{\rm K}} \right] \right\} + (1 - F_{\rm S}) \left[2F_{\rm L}\cos^2\theta_{\rm K} \left(1 - \cos^2\theta_l\right) + \frac{1}{2}P_1(1 - F_{\rm L}) \left(1 - \cos^2\theta_{\rm K}\right) \left(1 + \cos^2\theta_l\right) + \frac{1}{2}P_1(1 - F_{\rm L}) \left(1 - \cos^2\theta_{\rm K}\right) (1 - \cos^2\theta_{\rm L}) \cos 2\phi + 2P_5' \cos \theta_{\rm K} \sqrt{F_{\rm L}} \left(1 - F_{\rm L}\right) \left(1 - \cos^2\theta_{\rm K} \sqrt{1 - \cos^2\theta_l} \cos \phi_l\right) \right\}.$$

CMS-BPH-15-008

2018/5/10

P-wave

Efficiency & p. d. f

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Efficiency

- signal, control channels;
- correctly tagged, mistagged ever

 $2^{nd} q^2$ bin, Correctly tagged events

The probability density function

p.d.f.(m,
$$\theta_{K}, \theta_{l}, \Phi$$
) = $Y_{S}^{C} \left[S^{C}(m) S^{a}(\theta_{K}, \theta_{l}, \phi) \varepsilon^{C}(\theta_{K}, \theta_{l}, \phi) \right]$ Correctly tagged events
Mistag fraction $+ \frac{f^{M}}{1 - f^{M}} S^{M}(m) S^{a}(-\theta_{K}, -\theta_{l}, \phi) \varepsilon^{M}(\theta_{K}, \theta_{l}, \phi) \right]$ Mistagged events
 $+ Y_{B} B^{m}(m) B^{\theta_{K}}(\theta_{K}) B^{\theta_{l}}(\theta_{l}) B^{\phi}(\phi),$ Background

Signal contribution: mass shape (double gaussian), decay rate, and 3D efficiency function.

Background contribution: mass shape (exponential) and different degrees polynomial functions for each angular variable

Fitting & Validation

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Strategy

Extracted from unbinned extended maximum likelihood fit in each bin:

 $m(K^{+}\pi^{-}\mu^{+}\mu^{-}), \cos(\theta_{l}), \cos(\theta_{k}), \Phi$

- Fit performed in two steps:
 - 1. fit sidebands to determine background shape, fixed in the next step
 - 2. fit whole mass spectrum, 5 free parameters
- Feldman-Cousins method with profiling nuisance parameters

BEAUTY2018

- Fit performed with F_L free to float
- Measured F_L agrees with PDG value

2018/5/10

CMS-BPH-15-008

Fitting Results

 $B^0 \rightarrow K^{*0} \mu^+ \mu$

$2^{nd} q^2$ bin

A total of ~1400 signal events in all q² bins

11

P₁ and P₅' results

- The events are fit in seven q^2 bins from 1 to 19 GeV^2 , yielding 1397 signal and 1794 background events in total.
- CMS results are consistent with SM and previous measurements.

LHCb: *JHEP 02 (2016) 104* Belle: *Phys. Rev. Lett. 118, 111801 (2017)* SM-DHMV: *JHEP 01 (2013) 048, JHEP 05 (2013) 137* Debuie research research

Public result page:

https://cms-results.web.cern.ch/cms-results/public-results/publications/BPH-15-008/index.html

2018/5/10 BEAUTY2018

The differential decay rate of the $B^+(B^-)$ decay, as a function of $\cos \theta_l$, can be written as:

$$\frac{1}{\Gamma} \frac{d\Gamma[B^+ \to K^+ \mu^+ \mu^-]}{d\cos\theta_l} = \frac{3}{4} (1 - F_H) (1 - \cos^2\theta_l) + \frac{1}{2}F_H + \mathcal{A}_{FB} \cos\theta_l$$
$$0 \le F_H \le 3, |\mathcal{A}_{FB}| \le \min(1, F_H/2)$$

 θ_l : angle between the $\mu^+(\mu^-)$ and the $K^-(K^+)$ in the rest frame of the dimuon system. \mathcal{A}_{FB} : $\mu^+\mu^-$ forward-backward asymmetry.

 F_{H} : the contribution from (pseudo)scalar and tensor amplitudes to the decay width.

CMS-BPH-15-001

\mathbb{CMS} B⁺ $\rightarrow \mathrm{K}^{+}\mu^{+}\mu^{-}$: pdf and efficiency

$\geq pdf(m, \vartheta_l) = Y_S \cdot \underline{S(m)} \cdot \underline{S(\theta_l)} \cdot \underline{\varepsilon(\theta_l)} + Y_B \cdot \underline{B(m)} \cdot \underline{B(\theta_l)}$

✓ Signal: mass shape (double Gaussian), angular shape, and efficiency function.

 Background contribution: mass shape (exponential) and different degrees polynomial plus a Gaussian function for each angular variable.

Efficiency:

MS-BPH-15-001

- Factorized into an acceptance and a reco efficiency, for each q² bin
- the signal efficiency $\varepsilon(\cos\theta)$ is parametrized with a sixth-order polynomial.

BEAUTY2018

2018/5/10

Fitting and validation

>Fitting strategy:

✓ extracted from un-binned extended maximum likelihood fit in each bin:

 $m(K^+\mu^+\mu^-)$, $cos\theta_l$

 \checkmark Fit performed in two steps:

1) fit sidebands to determined background shape, fixed in the next step;

2) fit whole mass spectrum, 5 free parameters, A_{FB} , F_{H} , yields and background mass shape parameters.

>Validation with data control channels:

 ✓ Cross section σ_{J/ψK⁺} measured, comparable with 7TeV(CMS-BPH-10-004) and 13TeV(CMS-BPH-15-004) results, extrapolated by FONLL;
 ✓ Ratio of branching fractions measured agrees with PDG value.

Several validation steps are performed with simulation:

- with large size of MC signal sample
- with signal MC subsamples
- with 200 pseudo experiments

Fitting result projections on mass

: 2.00 - 4.30 GeV²

20.5 fb⁻¹ (8 TeV)

- Data

— Total fit

•••• Background

High Signal

CMS Preliminary

BEAUTY2018

Dayong Wang

Fitting result projections on angle

$B^+ \rightarrow K^+ \mu^+ \mu^- A_{FB}$ and F_H results

The measured A_{FB} and F_H show good agreement with the SM predictions within the uncertainty.

No clear indication of new physics beyond the SM could be drawn from present results.

CMS-BPH-15-001

Public result page: https://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/BPH-15-001/index.html

- Rare FCNC transitions b→sµ⁺µ⁻ are good probes of physics beyond standard model
- CMS has performed several angular analyses
 - $B^0 \rightarrow K^{*0}\mu^+\mu^-$: A_{FB} , F_L and BF
 - B⁰ → K^{*0}µ⁺ µ⁻ : P1, P5'
 - $B^+ \rightarrow K^+ \mu^+ \mu^- : A_{FB}, F_H$

arxiv: 1710.02846, Phys. Lett. B (2018)

CMS-BPH-15-001

- They provide precise tests of SM predictions. No deviations from theory are seen
- More are coming ... Stay tuned!
 - Sister analyses with Run-I data
 - More results based on Run-II data

Thank You

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

Source	$P_1(\times 10^{-3})$	$P_5'(\times 10^{-3})$
Simulation mismodeling	1–33	10–23
Fit bias	5-78	10-120
Finite size of simulated samples	29–73	31–110
Efficiency	17-100	5–65
K π mistagging	8–110	6–66
Background distribution	12–70	10–51
Mass distribution	12	19
Feed-through background	4–12	3–24
$F_{\rm L}$, $F_{\rm S}$, $A_{\rm S}$ uncertainty propagation	0–210	0–210
Angular resolution	2–68	0.1–12
Total	100-230	70–250

 F_L, F_S, A_S uncertainty propagation:

- Generate a **large** data, $O(100 \times data)$, pseudo experiments (one per q^2)
- Fit with all 6 angular parameters **free to float**
- Fit with **F**_L, **F**_S, **A**_s fixed
 - Ratio of uncertainties between free and partially-fixed fit is used to compute the systematic uncertainty

$B^+ \rightarrow K^+ \mu^+ \mu^-$ Systematic uncertainty

Limited size of MC samples:
Efficiency description:
Kinematic mis-modeling:
Background parametrization model:
Angular resolution:
Dimuon mass resolution:
Fitting bias:
Background distribution:

Systematic uncertainty	$A_{\rm FB}(\times 10^{-2})$	$F_{\rm H}(\times 10^{-2})$	
Limited size of MC samples	0.4–1.8	0.9–5.0	
Efficiency description	0.1–1.5	0.1–7.8	
Kinematic mismodeling	0.1–2.8	0.1–1.4	
Background parametrization model	0.1–1.0	0.1–5.1	
Angular resolution	0.1–1.7	0.1–3.3	
Dimuon mass resolution	0.1–1.0	0.1–1.5	
Fitting biases	0.1–3.2	0.4–25	
Background distribution	0.1–7.2	0.1–29	
Total systematic uncertainty	1.6–7.5	4.4–39	

 \triangleright Results of the fit for each q^2 bin, together with several SM predictions.

- \checkmark the inclusive q^2 bin 1.00–22.00 GeV² does not include events from the J/ ψ and ψ' resonance regions.
- \checkmark the first uncertainties are statistical, calculated by profiled Feldman-Cousins method.
- \checkmark the values from fifth to seventh columns are SM prediction.

	q^2 [GeV ²]	Y_S	$A_{ m FB}$	$F_{ m H}$	$F_{\rm H(EOS)}$	$F_{\rm H(DHMV)}$	$F_{\rm H(FLAVIO)}$
	1.00-2.00	169 ± 22	$0.08^{+0.22}_{-0.19}\pm0.05$	$0.21^{+0.29}_{-0.21}\pm0.39$	0.047	0.046	0.045
	2.00-4.30	331 ± 32	$-0.04^{+0.12}_{-0.12}\pm0.07$	$0.85^{+0.34}_{-0.31}\pm0.14$	0.024	0.023	0.022
	4.30-8.68	785 ± 42	$0.00^{+0.04}_{-0.04}\pm0.02$	$0.01^{+0.02}_{-0.01}\pm0.04$	—	0.012	0.011
	10.09–12.86	365 ± 29	$0.00^{+0.05}_{-0.05}\pm0.05$	$0.01^{+0.02}_{-0.01}\pm0.06$	—	—	—
	14.18–16.00	215 ± 19	$0.01^{+0.06}_{-0.05}\pm0.02$	$0.03^{+0.03}_{-0.03}\pm0.07$	0.007	0.007	0.006
	16.00–18.00	262 ± 21	$0.04^{+0.05}_{-0.04}\pm0.03$	$0.07^{+0.06}_{-0.07}\pm0.07$	0.007	0.007	0.006
	18.00-22.00	226 ± 20	$0.05^{+0.05}_{-0.04}\pm0.02$	$0.10^{+0.06}_{-0.10}\pm0.09$	0.008	0.009	0.008
	1.00-6.00	778 ± 47	$-0.14^{+0.07}_{-0.06} \pm 0.03$	$0.38^{+0.17}_{-0.21}\pm0.09$	0.025	0.025	0.020
	1.00-22.00	2286 ± 73	$0.00^{+0.02}_{-0.02} \pm 0.03$	$0.01^{+0.01}_{-0.01}\pm0.06$	_	_	_
MS-BPH-15-001 2018/5/10							

2018/5/10

Dayong wang

Profiled Feldman-Cousins

 $B^0 \to K^{*0} \ \mu^+ \mu^-$

The **best estimate** of P_1 and P'_5 is computed by:

- Discretize the bi-dimensional space P_1 - P'_5
- Maximize the likelihood as a function of Y_S, Y_B , and A_5^S at fixed values of P_1, P_5'
- Fit the likelihood distribution with a 2D-gaussian function
- The maximum of this function inside the physical region is the best estimate

Coverage: the confidence interval's construction is performed only along two 1D paths determined by profiling the 2D-gaussian description of the likelihood inside the physical region

CMS-BPH-15-008

2018/5/10

