ATLAS Plans for the High-Luminosity LHC

Wolfgang Walkowiak University of Siegen

on behalf of the ATLAS collaboration

BEAUTY 2018 La Biodola – Isola d'Elba, Italy

May 6th - May 11th, 2018

SPONSORED BY THE

Federal Ministry of Education and Research

Motivation for High Luminosity-LHC

Many physics achievements by LHC & experiments

- Higgs boson found (2012++)
- Several rare decays discovered (e.g. $B_s^{0} \rightarrow \mu^+ \mu^-, ...$)
- CP violation in B sector (e.g. $B_s^{0} \rightarrow J/\psi \phi$)
- Standard Model is describing measurements well

Many puzzles remaining

- Dark matter → New type(s) of particles?
- Supersymmetry: Does it exist?
- Flavor anomalies: LFV, LFU violation?
- Matter-antimatter asymmetry
 - \rightarrow How to explain it? CP violation only?

LHC at or above design performance

- Already at $L_{\text{peak}} = 2.06 \text{ x} 10^{34} \text{ cm}^{-2}\text{s}^{-1}$ (2 x design)
- E_{CMS} = 14 TeV expected for Run 3
- → Expect only linear increase in JL dt after Run 3
- Need more to improve measurements
- Upgrade LHC and experiments to High-Luminosity (HL) phase

LHC / HL-LHC Plan

[https://hilumilhcds.web.cern.ch/about/hl-lhc-project]

Study Higgs in detail and enhance discovery potential

- Aim: > 10 x $\int Ldt$ of LHC \rightarrow 3 000 4 000 fb⁻¹
- Peak L_{inst} ~ 5 ... 7.5 x 10³⁴ cm⁻² s⁻¹
- $<\mu>$ = 140 ... 200 pp interactions, every 25 ns
- → Unprecedented pileup, huge event rates → upgrade detectors!

Ú

[CERN-2017-007-M]

Inner detector and muon chambers most important for B physics

Ú

HL-LHC Challenge

HL-LHC tt event in ATLAS ITK at <µ>=200

tt event in ATLAS ITk
<µ> = 200
p_⊤(tracks) > 1 GeV

12 cm

2.5 mm

ATLAS Upgrade Program

system	phase0 / run 2	phase 1 / run 3	phase 2 / run 4				
Pixel	IBL at R=34 mm, new cooling, new services		replaced by ITk pixel				
SCT			replaced by ITk strips				
TRT			decommissioned				
LAr	all new power supplies	new L1 trigger electronics	new readout electronics (input to L0Calo), 40 MHz streaming, High Granularity Timing Detector (HGTD)				
Tile	new low voltage power supplies		readout electronics, 40 MHz streaming, improved drawer mechanics, new HV power supplies				
RPC	gas leak repairs	BMG (sMDT) in acceptance gaps, BIS78 chambers between barrel and end-caps	new chambers in inner barrel				
TGC		New Small Wheel (sTGC + MicroMegas)	new front-end electronics, forward tagger (option)				
MDT			replace all front-end electronics				
Trigger	new L1Topo, upgraded CTP, partial FTK L2 + EF \rightarrow HLT	new FEX, full FTK, new muon-CTP interface HLT: multi-threading, offline-like algorithms	L0 (Calo, Muons) 1 MHz, 10 μs latency optional: L1 (L0 at 4 MHz, L1Track) 800 kHz, 35 μs latency				
DAQ	custom hard-/firmware	FELIX for some systems	FELIX for all systems				
	Wolfgang Walkowiak - University of Siegen [LHCC-I-023, CERN-LHCC-2015-020] BEAUTY 2018, 2018-05-11 p. 6						

ATLAS Inner Tracker (ITk) Upgrade

New all-silicon detector:

- ITk pixel (13 m²):
 - 5 barrel, 5 EC layers (with rings)
 - Inclined sensors
 - Extends to η_{max} = 4.0 (2.5 now)
 - Innermost layer at 36 mm
 - ~ 580 M channels (80 M now)
- ITk strips (160 m²):
 - 4 barrel layers, 6 EC rings
 - ~ 50 M channels (6 M now)
 - Strip occupancy < 1%</p>

ITk material considerably less than current ID

- Improved tracking efficiency
- Better mass resolution

ATLAS Muon System Upgrade

New Small Wheel (NSW):

- Phase 1 upgrade
- Small strip Thin Gap Chambers (sTGC)
 - \rightarrow high efficiency for fast L1 trigger
- MicroMegas (MM)
 - \rightarrow (mostly) precision muon tracks
- Covers 1.3 < |η| < 2.7</p>

 \rightarrow reduce fake tracks in high radiation background region

New inner barrel (BI) RPCs:

- L0 trigger acceptance for reco'd combined muons within |η| < 1.05 increases from 78% → 96%
- "Worst case" (reduced RPC HV): from 57% 75% \rightarrow 92%

[ATLAS-PUB-2016-026]

BEAUTY 2018, 2018-05-11 p. 8

ATLAS Trigger and Data Acquisition Upgrades

L0 trigger (baseline):

- Hardware trigger based on calorimeter and muon information
- MDT precision information available
- Global event processor refines
 e, γ, τ, jet and E_T^{miss} objects
- I MHz rate at 10 μs latency

Option: dual L0/L1 trigger:

- 4 MHz rate at 10 µs latency
- Hardware tracking (L1track)
 - \rightarrow pileup suppression

Data Acquisition:

- Front End Link eXchange (FELIX)
- New Storage Handler

Event Filter:

- Hardware Track Trigger (HTT) → 400 kHz
- High-Level-Trigger (HLT) in software
 → 10 kHz

B-Physics HL-LHC Prospects at ATLAS

Precision measurements, rare processes

- $\mathsf{B}_{s}^{\ 0} \to \mathsf{J}/\psi \ \phi, \ \Lambda_{b}^{\ 0} \to \mathsf{J}/\psi \ \Lambda^{0}, \ \dots, \ \mathsf{B}_{(s)}^{\ 0} \to \mu^{+}\mu^{-}, \ \mathsf{b} \to \mathsf{s} \ \mu^{+}\mu^{-}$
 - Potential for beyond-SM effects
 - ◆ Make use of high ∫L dt
 - Exploit improved detector performance
 - Rare processes require complex trigger stategies

Lepton Flavor Violation (LFV) and Lepton Flavor Universality (LFU)

• $\tau \rightarrow 3 \ \mu, \ B_s^{\ 0} \rightarrow e \ \mu, \ B^0 \rightarrow K^{\star 0} \ e^+e^- \ / \ B^0 \rightarrow K^{\star 0} \ \mu^+\mu^-$

Heavy flavor production

- B-hadron, prompt/non-prompt quarkonia production
 - Test of QCD predictions
- Heavy flavor in association with other objects
 - W/Z + J/ψ, double quarkonia, …
 - Double parton scattering
- Searches for new/exotic states, new decay modes
 - χ_{b} , B_c decays, B_c(2S), heavy baryons, tetra/pentaquarks

$B_s^{\ 0} \rightarrow J/\psi \phi : CP \text{ Violation and } \Delta\Gamma_s - Run 1$ ຼົິ 0.18 $B_s^{0} \rightarrow J/\psi \phi$ with $J/\psi \rightarrow \mu^+\mu^-$, $\phi \rightarrow K^+K^-$ 95% C.L. $s = 7 \text{ TeV}, 4.9 \text{ fb}^{-1}$ Standard Model 10.16 $\sqrt{s} = 8$ TeV, 14.3 fb⁻¹ C.L. are statistical only • Sensitive to CPV phase ϕ_{s} $\Delta\Gamma_{\rm c}$ constrained to > 0 0.14 0.12 Combined Run-1 result: [Phys. Rev. D 90, 052007 (2014)] [JHEP 08 (2016) 147] 0.1 • ϕ_{c} = -0.090 ± 0.078 (stat) ± 0.041 (syst) rad 0.08 • $\Delta\Gamma_{s} = 0.085 \pm 0.011 \text{ (stat)} \pm 0.007 \text{ (syst) ps}^{-1}$ 0.06 0.04 Agrees with SM 0.2 -0.6 -0.4 -0.20 0.4 Consistent with other experiments Still room for New Physics in CPV $\Delta \Gamma_s [ps^{-1}]$ D0 8 fb⁻¹ Summer 2017 68% CL contours Expected upgrade improvements: $(\Delta \log \mathcal{L} = 1.15)$ 0.12

- Better decay time resolution
- Lower uncertainties due to higher statistics

(also for systematic uncertainties)

$\mathbb{R}^{0}_{s} \rightarrow J/\psi \phi$ Proper Time Resolution – Run 2

Insertable B Layer (IBL) added in Run 2:

- σ_{t} improves by ~ 30%
- Further improvement expected for ITk layout

Prospects for $B_s^0 \rightarrow J/\psi \phi$ at HL-LHC (1)

- Dedicated signal MC samples:
 - $L_{inst} = 7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ @ 14 TeV
 - $<\mu>$ = 200 pile-up events
 - ITk: innermost pixel layers at 39 mm and 80 mm; 50 x 50 μ m² pixels
 - ♦ p_T(μ[±]_{1,2}) > 5.5 GeV
- Candidate selection ~ Run 1
- Extrapolation of σ_{τ} resolution:
 - Run 2: 30% gain w.r.t. Run 1 (IBL)
 - further improvement at higher $p_{\tau}(B)$ for ITk
 - \bullet ~ stable with < μ >
- Analogue instead of digital pixel clustering
 - \rightarrow additional gain expected

BEAUTY 2018, 2018-05-11 p. 13

Prospects for $B_s^0 \rightarrow J/\psi \phi$ at HL-LHC (2)

ECFA 2013 study (3 000 fb⁻¹)

- Based on Run 1 analysis
 - Signal from MC
 - Background from sidebands
- Pseudo-experiments & fits:
 - Mass
 - Time and angular distributions
 - Flavor tagging
- Conservative!
 - $\sigma(\phi_s)$ (syst) < 0.04 rad

- Syst. uncertainties expected to improve with statistics:
 - B⁰_s flavor tagging calibration
 - Likelihood fit model description
 - Fit to $B^0 \rightarrow J/\psi K^{*0}$ component
 - Trigger efficiency
 - ID alignment
- Later study: [ATL-PHYS-PUB-2016-026]
 - Statistics x ~3 by topological μ trigger (lower p_T thresholds, same bandwidth)

[ATL-PHYS-PUB-2013-010]	2011	2012	2015-17		2019-21	2023-30+		
Detector	Run 1	Run 1	IBL		IBL	ITK		
Average interactions per BX $<\!\mu>$	6-12	21	60		60	200		
Luminosity, fb^{-1}	4.9	20	100		250	3 000		
Di- μ trigger $p_{\rm T}$ thresholds, GeV	4 - 4(6)	4 - 6	6 - 6	11 - 11	11 - 11	11 - 11		
Signal events per fb ⁻¹	4 400	4 320	3 280	460	460	330		
Signal events	22 000	86 400	327 900	45 500	114 000	810 000		
Total events in analysis	130 000	550 000	1 874 000	284 000	758 000	6 461 000		
MC $\sigma(\phi_s)$ (stat.), rad	0.25	0.12	0.054	0.10	0.064	0.022		

achieved: 0.078 (2011/12)

 $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-} - Run 1$

- $BR(B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}) \text{ w.r.t. } BR(B^{\pm} \rightarrow J/\psi K^{\pm})$
- Sensitive to New Physics in decay via loop diagrams

Run 1 result:

[Eur. Phys. J. C76 (2016) 513]

- BR(B⁰ $\rightarrow \mu^+\mu^-$) = 0.9 ^{+1.1} $_{-0.8}$ x 10⁻⁹
- BR(B⁰ → $\mu^+\mu^-$) < 4.2 x 10⁻¹⁰ at 95% CL
- Compatible with SM at ~ 2σ
- $3(B^0 o \mu^+ \ \mu^-) [10^{-9}]$ Lower in both BRs compared to combined CMS&LHCb result

Expected upgrade improvements:

- Better mass separation
- Increased statistics

Prospects for $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ – Mass Separation

Dedicated $B_s^{\ 0} \rightarrow \mu^+\mu^-$ MC: • Run 2 conditions like 2015

- HL-LHC & HL-ATLAS:
 - ↓ L_{inst} = 7.5 x 10³⁴ cm²s⁻¹ at 14 TeV CME
 <µ> = 200 pile-up events
 - ITk: inclined design, up to |η| < 4,
 50 x 50 μm² pixels

Candidate selection ~ Run 1

- B_s^{0} : oppositely charged μ^{\pm} ,
 - $p_{T}(\mu_{1,2}^{t}) > 5.5 \text{ GeV}$
- Two-track vertex fit
 m(B_s⁰) from ID/ITk-only tracks

[CERN-LHCC-2017-021, ATLAS-TDR-030]

BR($B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$) Prospects – Run 2 (130 fb⁻¹)

Signal statistics estimate:

- Based on Run 1 result
- Full Run 2 $\rightarrow \int L dt \sim 130 \text{ fb}^{-1}$
- $\sigma_{_{bb}}$: 8 TeV \rightarrow 13/14 TeV : factor ~1.7
- 2MU6 || MU6_MU4 topological triggers
- total: N_{Run2} ~ 7 x N_{Run1}

Pseudo-MC experiments

- 2D Neyman construction
- Based on Run 1 likelihood

Systematic uncertainties

- External:
 - f_s/f_d , $BR(B^{\pm} \rightarrow J/\psi K^{\pm})$
 - \rightarrow keep as in Run 1
- Internal: fit shapes, efficiencies, ...
 - \rightarrow scale with statistics

[ATL-PHYS-PUB-2018-005]

BR($B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$) Prospects – HL-LHC (3 ab⁻¹) Three trigger scenarios: 0.6 $\rightarrow \mu^{+} \mu^{-}$) [10⁻⁹] ATLAS Simulation Preliminary \rightarrow 15 x N_{Run1} **a** 2MU10 0.5 $B^0_{(s)} \rightarrow \mu^+ \mu^$ working point x15 Run1 statistics stat + svst • MU6_MU10 \rightarrow 60 x N_{Run1} 0.4 conservative stat only SM prediction B(B⁰-0.3 $\rightarrow 75 \text{ x N}_{\text{Run1}}$ 2MU6 99.7% 0.2 **Pseudo-MC** experiments 0.1 Profile likelihood contours 0 Based on Run 1 likelihood -0.1**Dominant systematics:** • $\sigma(f_s/f_d) \sim 8.3\%$ "conservative" B($B^0_{,} \rightarrow \mu^+ \mu^-$) [10⁻⁹] 0.6 0.6 B($B^0 \rightarrow \mu^+ \mu^-$) [10^-9] μ⁺ μ⁻) [10⁻⁹] ATLAS Simulation Preliminary **ATLAS** Simulation Preliminary 0.5 $B^0_{(s)} \rightarrow \mu^+ \mu^-$ 0.5⊢ $B^0_{(s)} \rightarrow \mu^+ \mu^$ working point x75 Run1 statistics working point x60 Run1 statistics stat + svst stat + syst 0.4 0.4 intermediate high yield stat only stat only ↑ SM prediction 0.3 0.3 B(B⁰ 0.2 0.2 0. 0.1 0 -0.1-0.1

 $\begin{bmatrix} \text{ATL-PHYS-PUB-2018-005} \\ \text{BEAUTY 2018, 2018-05-11} \\ \text{P}_{s}^{0} \rightarrow \mu^{+} \mu^{-} \end{bmatrix} \begin{bmatrix} 10^{-9} \\ 10^{-9} \end{bmatrix}$

Wolfgang Walkowiak – University of Siegen

3

4

B($B_{2}^{0} \rightarrow \mu^{+} \mu^{-})$ [10⁻⁹]

U

2

Conclusions

Extensive upgrade program for LHC & ATLAS: HL-LHC: 5x LHC peak luminosity (7.5 x 10³⁴ cm⁻²s⁻¹)

- ATLAS detector upgrades (ITk, NSW, sRPCs, L0/L1 hardware trigger, EF software trigger)
- ATLAS B physics program continues in Run 3 and for HL-LHC
 - Similar focus as in Run 1 and Run 2
 - Possibly add final states with electrons (needs trigger)
- Exploit detector upgrades, esp. of ITk and muon system
 - Improved secondary vertex reconstruction
 - Better invariant mass resolution
 - Develop topological L0/L1 triggers to keep low lepton p_T thresholds
- Use increased statistics for measurements and searches, e.g.:
 - $B_s^0 \rightarrow J/\psi \phi$: CP violation
 - \bullet B⁰_(s) \rightarrow $\mu^{+}\mu^{-}$: rare decays

Supporting Material

Wolfgang Walkowiak - University of Siegen

BEAUTY 2018, 2018-05-11 p. 20

$\mathfrak{F}_{s}^{0} \rightarrow J/\psi \phi$ at HL-LHC (Backup 1)

[ATL-PHYS-PUB-2013-010]

Normalized Scale **ATLAS 2012** <u> = 20 • Proper-time resolution σ_r 0.1 IBL Layout 6,6 <µ> = 60 simulated for : **IBL Layout 11,11** <µ> = 60 ITK Layout 11,11 <µ> = 200 0.08 ATLAS 2012 layout $(p_{\tau}(trigger \mu^{\pm}) > 4 \text{ GeV})$ 0.06 IBL layout **ATLAS** simulation $(p_{\tau}(trigger \mu^{\pm}) > 6 \text{ GeV})$ Preliminary 0.04 IBL layout $(p_{\tau}(trigger \mu^{\pm}) > 11 \text{ GeV})$ 0.02 ITK layout $(p_{\tau}(trigger \mu^{\pm}) > 11 \text{ GeV})$ 0.2 0.25 0.05 0.15 0.1 0.3 $\sigma_{\tau}(B_s^0)$ [ps]

[CERN-LHCC-2017-021, ATLAS-TDR-030]

- Resolutions for single μ tracks (p_T = 100 GeV) for:
 - 50 x 50 μm² pixels with digital clustering
 - 50 x 50 μ m² pixels with **anlogue** clustering

Clear improvement in both coordinates for analogue clustering
 Expect improved vertexing resolution

Prospects for $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ – Mass Separation

- Confidence regions for 2D Neyman belt construction
- Profile likelihood contours at constant ∆log L
- Contours are reasonably consistent for 68.3%
- Divergences for larger areas because of non-Gaussian contributions to likelihood

Uncertainties on BR(B⁰ $\rightarrow \mu^+ \mu^-$) and BR(B⁰ $\rightarrow \mu^+ \mu^-$): [ATL-PHYS-PUB-2018-005]

	$\mathcal{B}(B)$	$_{s}^{0} \rightarrow \mu^{+}\mu^{-})$	$\mathcal{B}(B^0 \to \mu^+ \mu^-)$		
	stat $[10^{-10}]$	$stat + syst [10^{-10}]$	stat $[10^{-10}]$	$stat + syst [10^{-10}]$	
Run 2	$7 \mathrm{x} \mathrm{N}_{\mathrm{R1}}$ 7.0	8.3	1.42	1.43	
HL-LHC: Conservative	\simeq 15x $\mathrm{N_{_{R1}}}3.2$	5.5	0.53	0.54	
HL-LHC: Intermediate	$e~60 \mathrm{x}~\mathrm{N_{_{R1}}} 1.9$	4.7	0.30	0.31	
HL-LHC: High-yield	75x $\mathrm{N}_{_{\mathrm{R1}}}1.8$	4.6	0.27	0.28	

CMS & LHCb combined (Run 1): [Nature 522 (2015) 68] • BR($B_s^0 \to \mu^+ \mu^-$) = 2.8^{+0.7}_{-0.6})x10⁻⁹, BR($B^0 \to \mu^+ \mu^-$) = (3.9^{+1.6}_{-1.4})x10⁻¹⁰ LHCb (2015+2016): • BR($B_s^0 \to \mu^+ \mu^-$) = 3.0 ± 0.6^{+0.3}_{-0.2})x10⁻⁹ [Phys. Rev. Let. 118 (2017) 191801]

Machine Upgrades for HL-LHC

[CERN-2017-007-M]

New SC magnets (4 + 12):

• $Nb_3Sn \rightarrow 12 - 13 T$

 \rightarrow 2x aperture for dipole and quadrupole magnets

Crab cavities:

- Increase luminosity
- Reduce beam-beam effects

New SC cables (MgB₂):

- Sustaining 100 kA
 → power converters into
 service gallery
- 1.2 km (~5%) of LHC ring with new components

Pre-accelerators:

- LINAC4 (2020)
 - \rightarrow 2x beam brightness
- Improvements for PS Booster, PS, SPS

ATLAS ID and ITk Material Budgets

[CERN-LHCC-2017-020, ATLAS-TDR-029]

Material budget of ITk is greatly reduced.

ATLAS Muon L0 Trigger with new BI RPCs (1)

L0 trigger acceptance for reco'd combined muon tracks within |η| < 1.05 increases from 78% → 96%

- L0 trigger acceptance for reco'd combined muon tracks within |η| < 1.05 increases from 57 ... 75% → 92%
- "worst case" szenario

[ATLAS-PUB-2016-026]

- L0 trigger acceptance for reco'd combined muon tracks
- with present trigger setup

- L0 trigger acceptance for reco'd combined muon tracks
- with optimal L0 trigger setup

L1 trigger (phase 1, Run 3)

L0 trigger (phase 2, baseline)

BEAUTY 2018, 2018-05-11 p. 30

Wolfgang Walkowiak – University of Siegen

ATLAS HL-LHC Trigger Upgrade Options

L0 trigger (baseline)

Dual L0 & L1 trigger

BEAUTY 2018, 2018-05-11 p. 31

ATLAS HL-LHC Trigger and Physics Goals

BEAUTY 2018, 2018-05-11 p. 32

Relative Yield vs. $(p_T(\mu_1), p_T(\mu_2))$ Threshold

 $B_s^{0} \rightarrow \mu^+ \mu^-$

 $B_{s}^{0} \rightarrow J/\psi \phi$

[CERN-LHCC-2017-020, ATLAS-TDR-029]

• Normalized to $p_T(\mu_1) > 6 \text{ GeV } \& p_T(\mu_2) > 6 \text{ GeV}$

(lowest unprescaled di- μ trigger in Run 2)

Run ½ baseline offline cuts applied

Relative Yield with Topological Selection

 $B_s^0 \rightarrow \mu^+ \mu^-$

 $B_{s}^{0} \rightarrow J/\psi \phi$

[CERN-LHCC-2017-020, ATLAS-TDR-029]

- Separation of muons by either |Δη(μ⁺,μ⁻)| > 0.2 rad or |Δφ(μ⁺,μ⁻)| > 0.2 rad (typical L1 muon trigger granularity)
- Normalized to $p_T(\mu_1) > 6 \text{ GeV } \& p_T(\mu_2) > 6 \text{ GeV}$
- Run ½ baseline offline cuts applied
- Work ongoing to improve trigger acceptance for near-by muons