Charm physics at B-factories

Longke LI (李龙科)

(On behalf of the Belle Collaboration)

Institute of High Energy Physics, CAS, China (IHEP)

the 17th International Conference on B-physics at Frontier Machines Beauty 2018, May 6-11, La Biodola, Italy

Machines and Charm Data Sets	$D^0 - \overline{D^0}$ Mixing and CP Violation	Charmed Baryons spectroscopy and decays	Summary

Outline

- Machines and Charm Data Sets
- 2 $D^0 \overline{D^0}$ Mixing and *CP* Violation
 - Formalism and Status
 - Time-dependent measurements
 - T-odd asymmetry measurement
 - Time-integrated CP asymmetry
- Oharmed Baryons spectroscopy and decays
 - Λ_c decays
 - Ξ_c baryons
 - Ω_c baryons
 - production rate

Machines and Charm Data Sets	$D^0 - \overline{D}^0$ Mixing and CP Violation	Charmed Baryons spectroscopy and decays	Summary

Outline

Machines and Charm Data Sets

- 2 $D^0 \overline{D^0}$ Mixing and CP Violation
 - Formalism and Status
 - Time-dependent measurements
 - T-odd asymmetry measurement
 - Time-integrated *CP* asymmetry
- 3 Charmed Baryons spectroscopy and decays
 - Λ_c decays
 - Ξ_c baryons
 - Ω_c baryons
 - o production rate
- Summary

Machines	and	Charm	Data	Sets
0				

 $D^0 - \overline{D}^0$ Mixing and CP Violation

Charmed Baryons spectroscopy and decays

Summary O

Machines at B-factories

Belle@KEKB and BABAR@PEPII

Also see Saurabh's report on 10 May

- KEKB and PEPII: asymmetric-energy e^+e^- collider, running near Y(4S) mass peak, with high peak luminosity $2.1(1.2)\times10^{34}~cm^{-2}s^{-1}$
- Excellent vertexing and particle identification with Vertex detector, Cerenkov detector, etc.
- Final state with $\gamma/K_S^0/\pi^0$ can be well reconstructed that are difficult/impractical to reconstruct at hadron machine
- Low background, high trigger/rec. efficiencies, minimal decay time bias

Machines and Charm Data Sets	$D^0 - \overline{D}^0$ Mixing and CP Violation	Charmed Baryons spectroscopy and decays	Summary
00			
Available Charm Samples			

Available Charm Samples from Charm factories, B-factories, hadron colliders

Experiment	Machine	C.M	Lumin.	N(<i>D</i>)	efficiency	©advantage/©disadvantage
CLEO	CESR (e^+e^-)	3.77 GeV	$0.8 \ \mathrm{fb}^{-1}$	$2.9 imes 10^{6}$ $2.3 imes 10^{6} (D^{\pm})$		© extremely clean enviroment © pure D-beam, almost no bkg
100 (A.		4.17 GeV	$0.6 \ {\rm fb}^{-1}$	$0.6 imes10^6$	~10-30%	© quantum coherence
рсст	BEPC-II (e ⁺ e ⁻)	3.77 GeV	$2.92~{\rm fb}^{-1}$	10.5×10^{6} $8.4 \times 10^{6} (D^{\pm})$	10-3070	😊 no CM boost, no T-dep analyses
ВСЭЩ		4.18 GeV	3 fb ⁻¹	$3 \times 10^{6} (D_{s}^{+})^{-1}$		
		4.6 GeV	0.567 fb ⁻¹	$1 imes 10^5(\Lambda_c^+)$		
				*	***	
	KEKB	10.58 GeV	$1 a b^{-1}$	1.3×10^{9}		clear event environment
\sim	$(e^{+}e^{-})$	10.00 000	1 80	$1.5 imes 10^8 (\Lambda_c^+)$		high trigger efficiency
BELLE					~5-10%	high-efficiency detection of neutrals
	PEP-II	10 58 GeV	$0.5 ab^{-1}$	6.5×10^{8}		many high-statistics control samples
	$(e^{+}e^{-})$	10.50 GCV	0.5 40	0.5 × 10		time-dependent analysis
				**	**	smaller cross-section than pp collid.
	Tevatron (pā)	1.96 TeV	$9.6~{\rm fb}^{-1}$	1.3×10^{11}		Iarge production cross-section Iarge boost
	(PP)					excellent time resolution
-	LHC	7 TeV	1.0 fb^{-1}		<0.5%	dedicated trigger required
LHCD	(nn)	8 TeV	2.0 fb^{-1}	$5.0 imes 10^{12}$		a hard to do with neutrals/neutrinos
incp	(-P)	2 /00	10	***	*	

Here cross section $\sigma(D^0D^0@3.77 \text{ GeV})=3.61$ nb, $\sigma(D^+D^-@3.77 \text{ GeV})=2.88$ nb, $\sigma(D^*D_s@4.17 \text{ GeV})=0.967$ nb, $\sigma(c\bar{c}@10.58 \text{ GeV})=1.3$ nb, $\sigma(D^0@LHCb)=1.661$ nb are used. This table mainly refers to Int. J. Mod. Phys. A **29**, 1430051 (2014) and G. Casarosa's report at SLAC experimental seminar 2016.

▶ Above N(Λ_c^+) does not include charmed hadrons from *B* decays at B-factories. Large charm sample from *B* meson sample via $b \rightarrow c$ transition is available to study charm physics.

Machines	and	Charm	Data	Sets

 $D^0 - \overline{D}^0$ Mixing and *CP* Violation

Charmed Baryons spectroscopy and decays

Summary O

Outline

Machines and Charm Data Sets

- 2 $D^0 \overline{D^0}$ Mixing and CP Violation
 - Formalism and Status
 - Time-dependent measurements
 - T-odd asymmetry measurement
 - Time-integrated CP asymmetry

Charmed Baryons spectroscopy and decays

- Λ_c decays
- Ξ_c baryons
- Ω_c baryons
- oproduction rate

Summary

Machines and Charm Data Sets

 $D^0 - \overline{D}^0$ Mixing and *CP* Violation

Charmed Baryons spectroscopy and decays

Summary O

Formalism and Status

Formalism of $D^0 - \overline{D^0}$ mixing and *CP* violation

• Open-flavor neutral meson transforms to anti-meson:

 $K^0 \Leftrightarrow \overline{K^0}, \ B^0_d \Leftrightarrow \overline{B^0_d}, \ B^0_s \Leftrightarrow \overline{B^0_s}, \ D^0 \Leftrightarrow \overline{D^0}$

• Flavor eigenstate $(|D^0\rangle, |\overline{D^0}\rangle) \neq mass$ eigenstate $|D_{1,2}\rangle$ with $M_{1,2}$ and $\Gamma_{1,2}$)

$$|D_{1,2}
angle\equiv p|D^{0}
angle\pm q|\overline{D^{0}}
angle$$
 (CPT: p²+q²=1)

- Mixing parameters: $\mathbf{x} \equiv 2 \frac{M_1 M_2}{\Gamma_1 + \Gamma_2}$, $\mathbf{y} \equiv \frac{\Gamma_1 \Gamma_2}{\Gamma_1 + \Gamma_2}$
- Unique system: only up-type meson for mixing

 Precise measurement of x, y: effectively limit the New Physics(NP) modes; and search for NP, eg: |x| ≫ |y| Three types of Charged-conjugated-Parity combined symmetry Violation (CPV):

$$A^{f}_{CP} = \frac{\Gamma(D \to f) - \Gamma(\bar{D} \to \bar{f})}{\Gamma(D \to f) + \Gamma(\bar{D} \to \bar{f})} = a^{f}_{d} + a^{f}_{m} + a^{f}_{i}$$

• a_d^f : (direct CPV) CPV in decay $|\bar{A}_f / A_f| \neq 1$ $\left| \frac{-p_0}{f} \right|^2 \neq \left| \frac{-p_0}{f} \right|^2$

•
$$a_m^f$$
: CPV in mixing with $r_m = |q/p| \neq 1$
 $\left| \stackrel{p_0}{\longrightarrow} \stackrel{p_0}{\longrightarrow} \stackrel{q}{\frown} f \right|^2 \neq \left| \stackrel{p_0}{\longrightarrow} \stackrel{p_0}{\longrightarrow} f \right|^2$

• a_i^f : CPV in interference with $\arg(q/p) \neq 0$

- SM with only a source: the phase in CKM
- $\bullet\,$ in charm sector, it's predicted at $\sim {\cal O}(10^{-3})$
- $\bullet~\sim 1\%$ exp. sensitivity to observe CPV $\!\!\rightarrow \! NP$

Machines and Charm Data Sets	$D^0 - \overline{D}^0$ Mixing and <i>CP</i> Violation $\bigcirc \bigcirc $	Charmed Baryons spectroscopy and decays	Summary O
Formalism and Status			
Status of $D^0 - \overline{D^0}$ m	ixing and CP violation	[mainly ref. charm physics at HFLAV]	

• $\gg 11.5\sigma$ to exclude no mixing (x,y)=(0,0) with CPV-allowed

- No hints for indirect CPV \leftarrow no direct CPV ($|q/p|, \phi$)=(1,0) at C.L=40%
- No clear evidence of direct CPV \leftarrow no CPV at C.L=9.3%

 D^0 - D^0 mixing observation in more channels, and CPV searches are two of most important physical goals for Charm WG at B-factories.

Machines and Charm Data Sets

 $D^0 - \overline{D}^0$ Mixing and *CP* Violation

Charmed Baryons spectroscopy and decays

Summary O

Formalism and Status

Status of D^0 - $\overline{D^0}$ mixing and CPV [mainly ref. charm physics at HFLAV]

	F 1 1 C 1 1	\mathcal{B}		LHCb		CLEO	<mark>₿€</mark> S∭
Decay Type	Final State	HELLE		-1		10 V 10	
DCS 2-body(WS)	$K^+\pi^-$	*	☆	$\star^{(a)}$	*	\checkmark	√ _δ κπ
DCS 3-body(WS)	$K^+\pi^-\pi^0$	0 ^(c)	☆			✓ A _{CP}	° _δ
CP-eigenstate	(even) h^+h^-	☆	☆	☆ ^(b) A _{CP}	✓ A _{CP}	✓	
er eigenstate	(odd) $K_S^0 \phi$	√					
Self-coni 3-body	$K_{S}^{0}\pi^{+}\pi^{-}$	√	✓	√	✓ A _{CP}	✓	° _δ
decay	$K_S^0K^+K^-$	0	√	0			°δ
uecay	$K_{S}^{0}\pi^{0}\pi^{0}$					🗸 Dalitz	⁰уср
Self-conj. SCS	$\pi^+\pi^-\pi^0$	✓ A _{CP}	✓ mixing A _{CP}	✓ A _{CP}			° <i></i>
3-body decay	$K^{+}K^{-}\pi^{0}$		✓ A _{CP}				°δ
SCS 3-body	$K_S^0 K^{\pm} \pi^{\mp}$			✓ A _{CP}		Vδ	 δ
Semileptonic decay	$K^+\ell^-\nu_\ell$	√	✓			\checkmark	
	$K^+\pi^-\pi^+\pi^-$	✓ R _{WS}	√	*			o _δ RS
Multi-body($n \ge 4$)	$\pi^+\pi^-\pi^+\pi^-$	◦ _{ACP}		$\checkmark^{(d)}_{A_{CP}}$			
	$K^+K^-\pi^+\pi^-$	°Aτ	✓ A _T	$\checkmark^{(e)}_{A_{CP}}$		✓ A _{CP}	0
	$K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}$	✓ A _T					
$\psi(3770) ightarrow D^0 \overline{D^0}$ vi	a correlations					√ _δ Kπ	√ y _{CP}

In D^0 - $\overline{D^0}$ mixing measurements: \star for observation (> 5 σ); \star for evidence (> 3 σ); \checkmark for measurement published; \circ for analysis on going. A_T stands for measuring *CP* asymmetry using T-odd correlations.

(a) LHCb gave the measurements in PRL 111, 251801 (2013) and PRD 95, 052004 (2017).

- (b) LHCb gave the measurements of CP violation in $D^0 \rightarrow h^-h^+$ decay in PRL 112, 041801 (2014) and PRL 118, 261803 (2017).
- (c) Belle measured WS-to-RS ratio R_{WS} and A_{CP} in $D^0 \rightarrow K^{\mp} \pi^{\pm} \pi^0$ in PRL **95**, 231801 (2005).
- (d) LHCb also searched for CP violation in phase space of $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ decays in PLB 769(2017) 345.
- (e) LHCb also searched for CP violation using T-odd correlations in $D^0 \rightarrow K^+ K^- \pi^+ \pi^-$ decays in JHEP 10(2014)005.

Machines and Charm Data Sets	D ⁰ -D ⁰ Mixing and CP Violation	Charmed Baryons spectroscopy and decays	Summary
	0000000		
Time-dependent measurements			
recent measurement:	mixing in $D^0 \rightarrow \pi^+ \pi$	$-\pi^0$ via TDDA (555 m 400) (66	(c)]

- ▶ Time-dependent Dalitz Analysis(TDDA) provides an essential tool to study $D^{0}-\overline{D^{0}}$ mixing, used for $D^{0} \rightarrow K_{S}^{0}\pi^{+}\pi^{-}$ (and $K_{S}^{0}K^{+}K^{-}$) with high statistics (Belle, BaBar, LHCb).
- Only method of sensitive to linear order in both mixing parameters, especially self-conjugated decays like K⁰_Shh (not rotated by an unknown δ)
- ► TDDP fit on (m_{-}^2, m_{+}^2, t) to extract mixing/CPV par. (x, y) and $\frac{q}{p}$ (if no CPV, $\frac{q}{p} = 1$) $|\mathcal{M}(f, t)|^2 = \frac{e^{-\Gamma t}}{2} [(|\mathcal{A}_f|^2 + |\frac{q}{p}|^2 |\mathcal{A}_{\bar{f}}|^2) \cosh(y\Gamma t) + (|\mathcal{A}_f|^2 - |\frac{q}{p}|^2 |\mathcal{A}_{\bar{f}}|^2) \cos(x\Gamma t) + 2 \operatorname{Re}[\frac{q}{p} \mathcal{A}_{\bar{f}} \mathcal{A}_{f}^*] \sinh(y\Gamma t) + 2 \operatorname{Im}[\frac{q}{p} \mathcal{A}_{\bar{f}} \mathcal{A}_{f}^*] \sin(x\Gamma t)]$
- Dalitz model is determined from a t-integrated Dalitz fit to an Isobar Model.
- Based on $\mathcal{L} = 468.1 \ fb^{-1}$, BaBar achieves first measurement on $D^0 \overline{D^0}$ mixing using TDDA of $D^0 \rightarrow \pi^+ \pi^- \pi^0$: $x = (1.5 \pm 1.2 \pm 0.6)\%$, $y = (0.2 \pm 0.9 \pm 0.5)\%$.

Machines and Charm Data Sets	$D^0 \cdot \overline{D}^0$ Mixing and CP Violation	Charmed Baryons spectroscopy and decays	Summary
	0000000		
T-odd asymmetry measurement			
T-odd asymmetry	measurements in D fou	ir-body decays	

- T-odd correlations provides a powerful tool to indirectly search for CP violation:
 (1) a triple product of momenta;
 (2) assuming CPT symmetry conservation
- ▶ Parity-odd observable $C_T = (\vec{p}_1 \times \vec{p}_2) \cdot \vec{p}_3$ and its CP-conjugated observable \overline{C}_T

$$A_{\mathcal{T}} = \frac{\Gamma(C_{\mathcal{T}} > 0) - \Gamma(C_{\mathcal{T}} < 0)}{\Gamma(C_{\mathcal{T}} > 0) + \Gamma(C_{\mathcal{T}} < 0)} \qquad \overline{A}_{\mathcal{T}} = \frac{\Gamma(-\overline{C}_{\mathcal{T}} > 0) - \Gamma(-\overline{C}_{\mathcal{T}} < 0)}{\Gamma(-\overline{C}_{\mathcal{T}} > 0) + \Gamma(-\overline{C}_{\mathcal{T}} < 0)}$$

T-odd asymmetry definition to veto FSI effects:

$$\left|a_{CP}^{ ext{T-odd}}=rac{1}{2}(A_{\mathcal{T}}-\overline{A}_{\mathcal{T}})
ight|$$
 can be nonzero if CPV

- \blacktriangleright In SM, CF decay: no effect is expected; CS decay: effect could be $\sim 0.1\%$ [PRD 51, 3478 (1995)]
- Observing a T-odd asymmetry would be a signal for processes beyond the SM.

Machines and Charm Data Sets	D ⁰ -D ⁰ Mixing and CP Violation	Charmed Baryons spectroscopy and decays	Summary
	00000000		
T-odd asymmetry measurement			
First measurement o	of $a^{\text{T-odd}}$ in $D^0 \to K_0^0$	$\pi^+\pi^-\pi^0$ at Belle (PRD 95 091101	(R) (2017)]

• using full data set with $\mathcal{L} = 966 \ fb^{-1}$; perform 2D fit $(M_{D^0}, \Delta M)$ for signal yields,

• simultaneously fit to four samples: D^0 , $\overline{D^0}$, $C_T < 0$ and $C_T > 0$.

Result Vs. others measurements in charmed mesons decay-rates:

$D^0 ightarrow K^0_S \pi^+ \pi^- \pi^0$	$a_{CP}^{\text{T-odd}} = (-0.28 \pm 1.38^{+0.23}_{-0.76}) \times 10^{-3}$	Belle ^[1]
$D^0 ightarrow ec{K^+} K^- \pi^+ \pi^-$	$a_{CP}^{\text{T-odd}} = (+1.7 \pm 2.7) \times 10^{-3}$	LHCb ^[2] , BaBar ^[3] , Focus ^[4]
$D^+ ightarrow K^0_S K^+ \pi^+ \pi^-$	$a_{CP}^{\tilde{T}\text{-odd}} = (-1.10 \pm 1.09) \times 10^{-2}$	BaBar ^[5] , Focus ^[4]
$D^+_s ightarrow K^{ar 0}_S K^+ \pi^+ \pi^-$	$a_{CP}^{ar{ extsf{T-odd}}} = (-1.39 \pm 0.84) imes 10^{-2}$	BaBar ^[5] , Focus ^[4]

• perform $a_{CP}^{\text{T-odd}}$ measurement in different PHSP \Rightarrow consistent with no CP violation.

- K. Prasanth et al. (Belle Collab.), Phys. Rev. D 95, 091101(R) (2017)
- 2 R. Aaij et al.(LHCb Collab.), JHEP 10, 5 (2014)
- P. del Amo Sanchez et al. (BaBar Collab.), Phys. Rev. D 81, 111103(R) (2010)
 J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 622, 239 (2005)
- [4] J.M. Link et al. (POCUS Collab.), Phys. Lett. B 622, 239 (2005)
 [5] J.P. Lees et al. (BaBar Collab.), Phys. Rev. D 84, 031103(R) (2011)

Belle II could improve these results with more precision benefited from the increased dataset.

Machines and Charm Data Sets	$D^0 - \overline{D}^0$ Mixing and CP Violation	Charmed Baryons spectroscopy and decays	Summary
	00000000		
Time-integrated CP asymmetry			
CP violation in D^+	$\rightarrow \pi^+ \pi^0$ at Belle IPRD	97 011101(R) (2018)]	

- Singly Cabibbo-suppressed decay: excellent candidates to probe CPV in charm sector.
- Any CP asymmetry found in these channels point to New Physics [PRD 85,114036(2012)]
- Based on 921 fb^{-1} , CP asymmetries are measured from a simultaneous fit to M_D :

$$A_{raw}^{\pi\pi} = \frac{N(D^+ \to \pi^+ \pi^0) - N(D^- \to \pi^- \pi^0)}{N(D^+ \to \pi^+ \pi^0) - N(D^- \to \pi^- \pi^0)} = A_{CP} + A_{FB} + A_{\epsilon}^{\pi^\pm}$$

- normalization $D^+ \to K_S^0 \pi^+$ with $A_{CP}^{K\pi} = (-0.363 \pm 0.094 \pm 0.067)\%_{[PRL 109, 021601 (2012)]} A_{raw}^{K\pi} = (-0.29 \pm 0.44)\%$ (tagged); $A_{raw}^{K\pi} = (-0.25 \pm 0.17)\%$.
- A combination: $A_{raw} = (+2.67 \pm 1.24 \pm 0.20)\%$ [EPJC75,453(2015)]
- Leads to $A_{CP}^{\pi\pi} = A_{CP}^{K\pi} + \Delta A_{raw}$, thus $A_{CP}(D^+ \to \pi^+ \pi^0) = (+2.31 \pm 1.24 \pm 0.23)\%$.

Machines and Charm Data Sets	$D^0 - \overline{D}^0$ Mixing and CP Violation	Charmed Baryons spectroscopy and decays	Summary
	0000000		
Time-integrated CP asymmetry			

Time-integrated *CP* asymmetry in D decays

• Time-integrated CP asymmetries are measured based on partial decay rates:

 $A_{CP}^{f} = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})} = a_{d}^{f} + a_{ind}^{f} \quad \text{e.g: in } D^{0} \to K_{S}^{0}h^{+}, \text{ measured asym.: } A_{raw} = A_{CP} + A_{FB} + A_{\epsilon}^{h^{+}} + A_{CP}^{K^{0}}$

• Several measurements are performed at Belle

Channel	1	Current meas	1 HCh				
Channel	0000	Current meas	urement		Enco	BELLE	Belle II
	L(/fb)	value(%)	References	50 ab *(%)	50 fb *(%)	measurement	projection
$D^0 \rightarrow \pi^+ \pi^-$	976	$+0.55 \pm 0.36 \pm 0.09$	PoS ICHEP2012 (2013) 353	±0.05	± 0.03	niedodromonie 9	projoduom
$D^0 ightarrow K^+ K^-$	976	$-0.32\pm0.21\pm0.09$	PoS ICHEP2012 (2013) 353	±0.03	±0.03		
$D^0 \rightarrow \pi^0 \pi^0$	966	$-0.03\pm0.64\pm0.10$	PRL 112, 211601 (2014)	±0.09		$B \longrightarrow \pi^0 \pi^0$	⊢ 0.08%-
$D^0 \rightarrow K^0_S K^0_S$	921	$-0.02\pm1.53\pm0.17$	PRL 119, 171801 (2017)	±0.20		E .	
$D^0 \rightarrow K_s^0 \pi^0$	966	$-0.21 \pm 0.16 \pm 0.07$	PRL 112, 211601 (2014)	±0.03		$7 = D^0 \rightarrow K_g \pi^0$ +	0.03%-
$D^0 \rightarrow \tilde{K}_S^0 \eta$	791	$+0.54\pm 0.51\pm 0.16$	PRL 106, 211801 (2011)	±0.07		- P. K.	. 0.07%
$D^0 \rightarrow K_S^0 \eta'$	791	$+0.98\pm0.67\pm0.14$	PRL 106, 211801 (2011)	±0.09		or D → K _s η	0.07 /8
$D^0 \rightarrow \pi^+ \pi^- \pi^0$	532	$+0.43 \pm 0.41 \pm 1.23$	PLB 662, 102 (2008)	±0.13		$5 \stackrel{f}{=} D^0 \rightarrow K_{\kappa} \eta'$	0.09%-
$D^0 \rightarrow K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	PRL 95, 231801 (2005)	±0.40			1
$D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$	281	$+0.43 \pm 1.30$	PRL 95, 231801 (2005)	±0.33		$4 \xrightarrow{=} D^0 \rightarrow \pi^* \pi^* \pi^0$	 0.12%
$D^+ \rightarrow \pi^0 \pi^+$	921	$+2.31\pm1.24\pm0.23$	PRD 97, 011101(R) (2018)	±0.40			0.47
$D^+ \rightarrow \phi \pi^+$	955	$+0.51\pm0.28\pm0.05$	PRL 108, 071801 (2012)	±0.04		$3 \rightarrow K \times \pi^{*}$	0.4%
$D^+ \rightarrow \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	PRL 107, 221801 (2011)	±0.14	± 0.01	2 D [*] →n [*]	
$D^+ \rightarrow \eta' \pi^+$	791	$-0.12\pm1.12\pm0.17$	PRL 107, 221801 (2011)	±0.14			- 0.1470
$D^+ \rightarrow K_S^0 \pi^+$	977	$-0.363 \pm 0.094 \pm 0.067$	PRL 109, 021601 (2012)	±0.03	±0.03	t D* → η' π*	0.14%
$D^+ \rightarrow K^0_S K^+$	977	$-0.25\pm0.28\pm0.14$	JHEP 02 (2013) 098	±0.05		Ε	:
$D_s^+ \rightarrow K_S^0 \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	PRL 104, 181602 (2010)	±0.29	±0.03	-6 -4 -2 (2 4
$D_s^+ \rightarrow K_S^0 K^+$	673	$+0.12\pm 0.36\pm 0.22$	PRL 104, 181602 (2010)	±0.05		no C	CPV ^(%)

- Belle II: precision of $\mathcal{O}(0.01\%)$ (down to SM level). $\sigma_{\text{Belle II}} = \sqrt{(\sigma_{\text{stat}}^2 + \sigma_{\text{syst}}^2) \cdot (\mathcal{L}_{\text{Belle}/50 \text{ ab}^{-1}}) + \sigma_{\text{irred}}^2}$
- With respect to LHCb, Belle II has advantages of excellent γ and π^0 reconstruction.

Machines and Charm Data Sets	$D^0 - \overline{D}^0$ Mixing and CP Violation	Charmed Baryons spectroscopy and decays	Summary
00	0000000	00000	

Outline

- 1 Machines and Charm Data Sets
- 2 $D^0 \overline{D^0}$ Mixing and *CP* Violation
 - Formalism and Status
 - Time-dependent measurements
 - T-odd asymmetry measurement
 - Time-integrated CP asymmetry
- Oharmed Baryons spectroscopy and decays
 - Λ_c decays
 - Ξ_c baryons
 - Ω_c baryons
 - production rate
 - Summary

Machines and Charm Data Sets	$D^0 - \overline{D}^0$ Mixing and CP Violation	Charmed Baryons spectroscopy and decays	Summary

Physics of Charmed Baryons

- Character: $M_c \gg M_q$ (q=u,d,s); Di-quark structure in light quarks in charmed bargyons
- Charmed baryon weak decay is not understood well: three diagrams contribute in the tree level, but the strength of each is not known.

Gound state charmed baryons: Λ_c, Σ_c, Ξ_c, Ω_c; and their excited states (spectroscopy)
 a good laboratory to study strange baryons as decay proceed via c → s transition.

Machines and Charm Data Sets	$D^0 - \overline{D}^0$ Mixing and CP Violation	Charmed Baryons spectroscopy and decays	Summary
00	0000000	00000	
$\Lambda_{\mathcal{C}}$ decays			
Search for hidden-st	range pentaguark P	in $\Lambda^+ \rightarrow \phi n \pi^0$ (ppp or equation)	(0017)]

- Search for P_s in $\Lambda_c^+ \rightarrow \phi p \pi^0$: motivated by $P_c^+(4380, 4450)$ in $\Lambda_b \rightarrow J/\psi p K^-(LHCb)$.
- Determine signal yields 148 \pm 62 by 2D fit to M($K^+K^-p\pi^0$) and M(K^+K^-)

- To search for P_s, perform 2D fits in bins of M(φp): N(P_s → φp) = 78 ± 28
 No significant P⁺_s signal observed. M(P_s) = 2.025 ± 0.005 GeV/c² and Γ(P_s) = 22 ± 12 MeV.
- Measured $BR(\Lambda_c \rightarrow K^-\pi^+ p \pi^0) = (4.42 \pm 0.05 \pm 0.12 \pm 0.16)\%$: most precise measurement and consistent with recent BESIII result $BR = (4.53 \pm 0.23 \pm 0.30)\%$ [PRL116,052001(2016)]

- Based on full Y(4S) data set (772 M $B\bar{B}$ pairs) at Belle.
- Five Λ_c decay channels: $\Lambda_c^+ \to p K^- \pi^+$, $p K_S^0$, $\Lambda \pi^+$, $p K_S^0 \pi^+ \pi^-$ and $\Lambda \pi^+ \pi^+ \pi^-$.
- B candidates via beam-energy constraint M_{bc} and ΔM_B .

• fit result (> 5 σ): $M_{\Xi_c(2930)} = (2928.9 \pm 3.0^{+0.9}_{-12.0}) \text{ MeV}/c^2$, $\Gamma_{\Xi_c(2930)} = (19.5 \pm 8.4^{+5.9}_{-7.9}) \text{ MeV}.$

- measured $\mathcal{B}(B^- \to K^- \Lambda_c^+ \bar{\Lambda}_c^-) = (4.80 \pm 0.43 \pm 0.60) \times 10^{-4}$ [W.A. $_{(6.9 \pm 2.2) \times 10^{-4}}$]
- measured $\mathcal{B}(B^- \to \Xi_c(2930)\bar{\Lambda}_c^-)\mathcal{B}(\Xi_c(2930) \to K^-\Lambda_c^+) = (1.73 \pm 0.45 \pm 0.21) \times 10^{-4}.$
- No significant signals seen in the $\Lambda_c^+ \bar{\Lambda}_c^-$ mass spectrum. Upper limits for Y(4600): $\mathcal{B}(B^- \to K^- Y(4660)) \mathcal{B}(Y(4600) \to \Lambda_c^+ \bar{\Lambda}_c^-) < 1.2 \times 10^{-4}.$

Machines and Charm Data Sets	$D^0 - \overline{D}^0$ Mixing and CP Violation	Charmed Baryons spectroscopy and decays	Summary
		00000	
$\Omega_{\mathcal{C}}$ baryons			
BR of Ω_c hadronic	decavs at Belle IPRD 9	7 . 032001 (2018)]	

- Ω_c is only has same flavor light quarks (ss), constructive interf. is though to be origin of this short lifetime: $[\tau(\Lambda_c^+/\Xi_c^0/\Xi_c^+/\Omega_c) = (200 \pm 6)/(112^{+13}_{-10})/(442 \pm 26)/(69 \pm 12) \text{ ps}]$
- Precise measurements will shed light on the dynamics of baryon weak decays.
- Based on full Belle data sets with $\mathcal{L} =$ 980 fb⁻¹; 8 decay modes are measured relative to nominal mode $\Omega^{-}\pi^{+}$.
- Precision improved by \sim factor 2 for already measured modes.

The Control of Control	50				
		Mode	Branching ratio with respect to $\Omega^-\pi^+$	Substructure	Previous measurement
Service Manager Very and the second	20 1 1419 414 4 19 1 14 14 14 14 14 14 14 14 14 14 14 14 1	$\Omega^{-}\pi^{+}$	1		
140	20	$\Omega^{-}\pi^{+}\pi^{0}$	$2.00 \pm 0.17 \pm 0.11$		$1.27 \pm 0.3 \pm 0.11$ [4]
120 - A SKx*	50 XXX	$\Omega^- \rho^+$		>71%	
2 CLANNAR WINCH		$\Omega^-\pi^+\pi^-\pi^+$	$0.32 \pm 0.05 \pm 0.02$		0.28 ± 0.09 ± 0.01 [4]
20	S 20	$\Xi^{-}K^{-}\pi^{+}\pi^{+}$	$0.68 \pm 0.07 \pm 0.03$		0.46 ± 0.13 ± 0.03 [4]
200- NI + EKå*	20 43 - N	$\Xi^0(1530)K^-\pi^+$		(33 ± 9)%	
	a six	$\Xi^{-}\bar{K}^{*0}\pi^{+}$		$(55 \pm 16)\%$	
100 Carton and a state of the second state of	Stratian Alternation	$\Xi^{0}K^{-}\pi^{+}$	$1.20 \pm 0.16 \pm 0.08$		$4.0 \pm 2.5 \pm 0.4$ [2]
80	State of the state	$\Xi^0 \bar{K}^{*0}$		$(57 \pm 10)\%$	
8 New 1	70 - 2'KK's*	$\Xi^{-}\bar{K^{0}}\pi^{+}$	$2.12 \pm 0.24 \pm 0.14$ First obse	rv.	
88	40	$\Xi^0 \overline{K^0}$	$1.64 \pm 0.26 \pm 0.12$ First obse	rv.	
States the set of a state the set of the set	20 20	$\Lambda \bar{K}^0 \bar{K}^0$	$1.72 \pm 0.32 \pm 0.14$ First obse	rv.	
10 1- 2.55 2.6 2.65 2.7 2.75 2.8 2.85	2.55 2.6 2.66 2.7 2.75 2.8 2.85	$\Sigma^+ K^- K^- \pi^+$	<0.32 (90% CL)		
Invariant Mass (Sel/UP)	Invariant Mass (GeW/P)				

• Intermediate resonances are studied for first time in 3 decays: dominant contributions.

Machines and Charm Data Sets	$D^0 - \overline{D}^0$ Mixing and CP Violation	Charmed Baryons spectroscopy and decays	Summary
		00000	
Ω_{c} baryons			
	a^0 a^+ a^+		

Confirm of excited $\Omega_c^0 \to \Xi_c^+ K^-$ [PRD 97, 051102(R) (2018)]

- LHCb: dramatic observation of five excited Ω_c based on 3.3 \textit{fb}^{-1} [PRL 118, 182001 (2017)]
 - ▶ Reconstruct $\Xi_c^+ \to pK^-\pi^+$ (1.0 × 10⁶), five peaks appear in $\Xi_c^+K^-$:

	Free free free free free free free free					
	400	Resonance	Mass (MeV)	Γ (MeV)	Yield	Nσ
		$\Omega_{c}(3000)^{0}$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5 \pm 0.6 \pm 0.3$	$1300\pm100\pm80$	20.4
~ ~	300 - 1	$\Omega_{c}(3050)^{0}$	$3050.2 \pm 0.1 \pm 0.1^{+0.3}_{-0.5}$	$0.8 \pm 0.2 \pm 0.1$	$970\pm60\pm20$	20.4
×			-0.5	<1.2 MeV, 95% C.L.		
		$\Omega_{c}(3066)^{0}$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5 \pm 0.4 \pm 0.2$	$1740 \pm 100 \pm 50$	23.9
ates		$\Omega_c(3090)^0$	$3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	$8.7 \pm 1.0 \pm 0.8$	$2000 \pm 140 \pm 130$	21.1
did		$\Omega_{c}(3119)^{0}$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1 \pm 0.8 \pm 0.4$	$480\pm70\pm30$	10.4
Car			-0.5	<2.6 MeV, 95% C.L.		
	100 - 100	$\Omega_c(3188)^0$	$3188 \pm 5 \pm 13$	$60 \pm 15 \pm 11$	$1670 \pm 450 \pm 360$	
	A loss of the ball	$\Omega_{c}(3066)_{fd}^{0}$			$700\pm40\pm140$	
		$\Omega_{c}(3090)_{61}^{0}$			$220 \pm 60 \pm 90$	
	3000 3100 3200 3300	$\Omega_{c}(3119)^{0}_{c}$			$190 \pm 70 \pm 20$	
	$m(\Xi_c^*K)$ [MeV]	ex /id				

• Belle: using full data sets, confirm four of five narrow states reported by LHCb.

► $\Omega_c(300)(3.9\sigma), \Omega_c(3050)(4.6\sigma), \Omega_c(3066)(7.2\sigma), \Omega_c(3090)(5.7\sigma)$

- Inclusive cross section of hyperons and charmed baryons using a 800 fb^{-1} near Y(4S).
- Scaled direct production cross section as a function of mass of hyperons and charmed baryons.

- Lie on one common exponential function of mass. Explained by string fragment model
- A factor three suppression of Σ_c is observed:
 - ► If charmed baryon production proceeds via diquark-anti-diquark pair production, the mass difference of spin-0 diquark (Λ_c) and spin-1 diquark (Σ_c) can explain this.
 - Suggesting a diquark structure in the charmed baryon.

Machines and Charm Data Sets	$D^0 - \overline{D}^0$ Mixing and CP Violation	Charmed Baryons spectroscopy and decays	Summary

Outline

- 1 Machines and Charm Data Sets
- 2 $D^0 \overline{D^0}$ Mixing and CP Violation
 - Formalism and Status
 - Time-dependent measurements
 - T-odd asymmetry measurement
 - Time-integrated CP asymmetry
- Oharmed Baryons spectroscopy and decays
 - Λ_c decays
 - Ξ_c baryons
 - Ω_c baryons
 - oproduction rate

Machines and Charm Data Sets	$D^0 - \overline{D}^0$ Mixing and <i>CP</i> Violation	Charmed Baryons spectroscopy and decays	Summary •
Summary			

- Belle and BaBar have achieved fruitful production on charm physics at B-factories, based on an integrated luminosity of $\sim 1.5~ab^{-1}$ data sets.
- Measure $D^0 \overline{D^0}$ mixing and *CP* violation in many channels at Belle and BaBar.
 - ► First measurement of mixing in $D^0 \rightarrow \pi^+ \pi^- \pi^0$ at BaBar: x = (1.5 ± 1.2 ± 0.6)%, y = (0.2 ± 0.9 ± 0.5)%
 - ► *CP* asymmetries via T-odd moments in $D^0 \rightarrow K_S^0 \pi^+ \pi^- \pi^0$ at Belle: $a_{CP}^{\text{T-odd}} = (-0.28 \pm 1.38^{+0.23}_{-0.76}) \times 10^{-3}$
- Actively working on the charmed baryons at Belle:
 - ▶ Search of hidden-strange pentaquark in $\Lambda_c^+ \rightarrow \phi p \pi^0$.
 - Observation of $\Xi_c(2930)^0$ in $B^+ \to K^- \Lambda_c^+ \bar{\Lambda}_c^-$.
 - ▶ Branching fractions of Ω_c hadronic decays; confirm excited $\Omega_c^0 \to \Xi_c^+ K^-$
 - production rate of hyperons and charmed baryons.

Let's look forwards to the charming news of charm physics from Belle II.

backup	Belle II at SuperKEKB	Time resolution at Belle II	ROE method of <i>D</i> ⁰ flavor tag
Back lin			

Thank you for your attention.

谢谢!

Longke LI (李龙科) Room A519, Main Building Institute of High Energy Physics, CAS (IHEP) 19B, Yuquan Road, Shijingshan District Beijing City, 100049, P. R. China (9) (+86)-159-5693-4447 记 lilongke_ustc lilongke@ihep.ac.cn

backup	Belle II at SuperKEKB ○	Time resolution at Belle II	ROE method of <i>D</i> ^o flavor tag
SuperKEKB			
Suberverve	,		

• KEKB \Rightarrow SuperKEKB (with "Nano-Beam" scheme)

more info, see Mario's report on 10 May

$ \text{luminosity: } \mathcal{L} = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*}\right) \frac{I_{\pm}\xi_{y\pm}}{\beta_{y\pm}^*} \left(\frac{R_L}{R_{\xi_y}}\right) $					
		E (GeV)	I (A)	β_y^* (mm)	Lumin.
		LER/HER	LER/HER	LÉR/HER	$(cm^{-2}s^{-1})$
	KEKB	3.5/8.0	1.64/1.19	5.9/5.9	$2.1 imes10^{34}$
	SuperKEKB	4.0/7.0	3.60/2.60	0.27/0.31	$80 imes10^{34}$
		$\beta\gamma\sim 2/3$	×2	×20	×40

► Target integrated luminosity for Belle II at SuperKEKB: $\int_{t} \mathcal{L} dt = 50 \text{ ab}^{-1}$

First physics run will start in 2018 Each 1 ab^{-1} experimental data provides

•
$$\sim 1.1 \times 10^3 BB \Rightarrow a \text{ super B-factory;}$$

• $\sim 1.3 imes 10^9 \ c ar{c} \Rightarrow$ a super charm factory;

•
$$\sim 0.9 \times 10^9 \ \tau^+ \tau^- \Rightarrow$$
 a super τ factory;

• wide effective $E_{c.m}$ =[0.5-10] GeV via ISR process.

backup	Belle II at SuperKEKB	Time resolution at Belle II	ROE method of <i>D</i> ⁰ flavor tag
Improved D^0	proper time resolu	ution at Belle II	

► Time-dependent amplitude of $D^0 \to f$ (here $t[\tau_{D^0}]$ and $\lambda_f = \frac{q}{p} \frac{\lambda_f}{A_f}$):

 $\Gamma(D^{0}(t) \rightarrow f) \propto |\mathcal{A}_{f}|^{2} e^{-t} \left(\frac{1+|\lambda_{f}|^{2}}{2} \cosh(yt) - \operatorname{Re}(\lambda_{f}) \sinh(yt) \frac{1-|\lambda_{f}|^{2}}{2} \cos(xt) + \operatorname{Im}(\lambda_{f}) \sin(xt) \right) \otimes_{t} \operatorname{Res}(t)$

▶ Time resolution Res(t) is essential in t-dept. measurements of $D^0 - \overline{D^0}$ mixing and CPV

► Determine D^0 proper time: $t = \frac{\ell_{dec}}{c\beta\gamma} = \frac{m_D}{cp}\vec{d}\cdot\vec{p}$ and its uncertainty σ_t

- Based on MC study, time resolution = 140 fs: 2× better than BaBar (270 fs)
- Time error σ_t : factor 3 improvement; and $\text{RMS}(\sigma_t)$: reduced by a factor 2.
 - $Res = Gauss(\mu, k\sigma_t)$, so reduced RMS(σ_t) (higher weight in the fit) results in an increased statistics

ROE: a new D^0 flavor tagging method

- To measure CPV, the flavor of D^0 is determined effectively.
- At B-factories, the charge of π_s from D^{*+} → D⁰π⁺_s is used to tag the flavor of D⁰; but D⁰ mesons from B decays are excluded.
 ⇒ only D⁰ from D^{*±} in cc̄ events (25%) were used.
- ROE method: select events with only one K^{\pm} in the Rest Of Event;
- the charge of this K^{\pm} in ROE to determine the flavor of D^0 .

$$rac{N_{ag}}{\epsilon_{ag}}=rac{\epsilon_{tag}^{0}}{\epsilon_{tag}^{*}}\cdotrac{N_{gen}^{0}+(1-\epsilon_{tag}^{*})\cdot N_{gen}^{*}}{N_{gen}^{*}}\sim1$$

here $\varepsilon^*_{tag}(\varepsilon^0_{tag})$: tagging efficieny of $D^*(\mathsf{ROE})$ method with 80%($\leqslant 20\%$). $N^*_{gen}(N^0_{gen})$: number of D^0 produced by a D^* (other $c\bar{c}$ event) with $N^0_{gen}:N^*_{gen}\simeq 3:1$

A reduction of \sim 15% of $\sigma(\textit{stat})$ on $\textit{A_{CP}}$

An additional D^0 sample from ROE for mixing and CPV measurements.

backup	Belle II at SuperKEKB	Time resolution at Belle II	ROE method of D^0 flavor tag $O \bullet$

Impacts on measurements of CP asymmetries ref. [BELLE2-NOTE-PH-2017-001]

▶ Ratio $\frac{\sigma_A^0}{\sigma_A^*}$ of A_{CP} statistical sensitivity σ between ROE method and D^* method

$$lpha = rac{\sigma_A^0}{\sigma_A^*} = \sqrt{rac{1}{3} \cdot rac{Q^*}{Q^0} \cdot rac{
ho_{rec}^*}{
ho_{rec}^0}}$$

• effective tagging efficiency: $Q = \epsilon_{tag} (1 - 2\omega)^2$ with mistagging ratio ω ;

1

 ρ_{rec}: purity of reconstructed D.

► Combining ROE and D^* method: $\sigma_A^c = \frac{\alpha}{\sqrt{1+\alpha}} \simeq 0.85 \cdot \sigma_A^*$, with assuming $\rho_{rec}^* / \rho_{rec}^0 = 1.4$

