Charm decays

Stefan de Boer

BEAUTY 2018 La Biodola, Isola d'Elba, Italy, 11.05.2018

From beauty to charm

ullet From Elba island to Novosibirsk: \sim 6.000 km, two weeks

- ullet From Elba island to Novosibirsk: \sim 6.000 km, two weeks
- Experimentally, *b*-machines are also charm-machines, see next talks
- Theoretically, adopt results from *b*-physics

 <u>but</u>, decays into *τ*-leptons suppressed/forbidden,
 1/m_c-counting questionable, short-long distance behavior challenging, ...
- Presently, charm is little sister of beauty in the flavor family: Both can learn from each other, *e.g.*, complementary in BSM searches, charm represents uniquely up-type sector, insights into QCD from charm

Selection/recent developments

- Leptonic and semileptonic decays
- 2 Hadronic two-body decays
- 3 Rare decays
 - back to beauty

"determine SM parameters"

CKM matrix
$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$
,
decay constants f_D , form factors f_+ and f_0

$$\mathsf{CKM} \text{ matrix } \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix},$$

decay constants f_D , form factors f_+ and f_0

• Singly-Cabibbo-suppressed decays: GIM-cancellation $(V_{ud}V_{cd}^* + V_{us}V_{cs}^*) \ll 1$ and weak phases $|V_{ub}V_{cb}^*| \ll 1$

$$\mathsf{CKM matrix} \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix},$$

decay constants f_D , form factors f_+ and f_0

•
$$\mathcal{A}(D \to I\nu) \sim V_{cq}^* \langle 0 | \bar{q} \gamma_{\mu} \gamma_5 c | D(p') \rangle = V_{cq}^* [i p'_{\mu} f_D]$$

• $\mathcal{A}(D \to P I \nu) \sim V_{cq}^* \langle P(p) | q \gamma_{\mu} c | D(p') \rangle =$
 $V_{cq}^* \left[f_+(q^2) \left((p'+p)_{\mu} - \frac{m_D^2 - m_P^2}{q^2} q_{\mu} \right) + f_0(q^2) \frac{m_D^2 - m_P^2}{q^2} q_{\mu} \right],$
 $q^2 = (p'-p)^2$

• $f_0(q^2)$ suppressed in charm decays

Form factors

Interplay of experiments and lattice QCD.

precise, in agreement with lattice QCD, recently, $(N_f=2+1+1)$ [ETM: 1706.03017].

 f_0 only from lattice QCD.

	f_D [MeV]	f_{D_s} [MeV]
HFLAV 2016 (exp)	203.7(4.9)	257.1(4.6)
FLAG 2016 $(N_f = 2 + 1 + 1)$	212.15(1.45)	248.83(1.27)

Experiments (assuming CKM unitarity) and lattice QCD compatible at 2σ .

Recent $(N_f = 2 + 1)$ [RBC/UKQCD: 1701.02644], $(N_f = 2 + 1 + 1)$ [Fermilab Lattice/MILC: 1712.09262] computations with individual uncertainties similar to 2016 averaged ones.

QCD sum rule calculations compatible, with larger uncertainties, e.g., $f_D = (208 \pm 10) \text{ MeV}$, $f_D = (240 \pm 10) \text{ MeV}$ [Wang: 1506.01993]. "test the SM"

with $D \rightarrow P_1 P_2$, $P_{1,2} = \pi$, K. For singly-Cabibbo-suppressed decays: $\mathcal{A} = \lambda_{sd} A_{sd} - \frac{\lambda_b}{2} A_b$, $\lambda_q = V_{cq}^* V_{uq}$, $\lambda_{sd} = \frac{\lambda_s - \lambda_d}{2}$ $SU(3)_F$ -symmetry relates different decay modes. with $D \rightarrow P_1 P_2$, $P_{1,2} = \pi, K$.

For singly-Cabibbo-suppressed decays: $\mathcal{A} = \lambda_{sd} A_{sd} - \frac{\lambda_b}{2} A_{b}, \qquad \lambda_q = V_{cq}^* V_{uq}, \ \lambda_{sd} = \frac{\lambda_s - \lambda_d}{2}$ $SU(3)_F$ -symmetry relates different decay modes.

Branching ratios, *here*, [Nierste et al: 1503.06759, 1508.00074, 1506.04121, 1708.03572]:

- Topological amplitudes + diagrammatic SU(3)_F-breaking
- Fit to branching ratio data $+ 1/N_c$ input
- Results: SU(3)_F-limit excluded by more than 5σ. Around 30% SU(3)_F-breaking in decay amplitudes sufficient.

Hadronic two-body decays

CP asymmetries: $a_{CP}^{dir} = \operatorname{Im} \frac{\lambda_b}{\lambda_{sd}} \operatorname{Im} \frac{A_b}{A_{sd}} \qquad (\operatorname{Im} \frac{\lambda_b}{\lambda_{sd}} \simeq -6 \times 10^{-4})$

- $|A_{sd}|$ from branching ratio fit
- CP asymmetries require additional combinations of amplitudes, not provided by branching ratio fit
 but, sum rules correlate different CP asymmetries eliminating these combinations
- Two strategies:
 - Falsify SM with sum rules, or clean predictions
 - Discover CP-violation in charm: large SM predictions favored

Also, $A_{CP}(D^+ \to \pi^+\pi^0) \simeq 0$ from isospin sum rules, *e.g.*, [Grossmann et al: 1204.3557], compatible with $a_{CP}^{dir} = +0.0231 \pm 0.0124 \pm 0.0023$ [Belle: 1712.00619]

Hadronic two-body decays

Discover CP-violation in charm:

•
$$D^0 \rightarrow K_s K_s$$
: $|a_{CP}^{dir}| \leq 1.1\%$ [Nierste et al: 1508.00074]
from sizable tree level exchange, and since $A_{sd} = 0$ in
 $SU(3)_F$ -limit while $A_b \neq 0$.
Experimentally, $A_{CP} = -0.0002 \pm 0.0154$, statistical
uncertainty dominant [Belle: 1705.05966], see Giulia's poster for
LHCb measurement.

•
$$D \rightarrow K_s K^{*0}$$
: $|a_{CP}^{dir}| \leq 0.3\%$ [Nierste et al: 1708.03572]
Experimentally favored (charged tracks from prompt $K_s K^{*0}$ decay, Dalitz plot analysis, no flavor tagging required), first study [LHCb: 1509.06628].

Many more works, *e.g.*, [Brod et al: 1203.6659, Hiller et al: 1211.3734, Khodjamirian et al: 1706.07780]. Progress in lattice QCD [Hansen et al: 1204.0826].

- Decay constants and D → P form factors precisely known from experiments and (recent) lattice QCD computations with competing uncertainties.
- Sizable SU(3)_F-breaking in two-body hadronic decays from branching ratio fit.
- SM CP asymmetries can be $\sim 1\%$ in $D^0 \to K_s K_s$ and $D \to K_s K^{*0}$.

"search BSM physics"

SM anatomy - perturbative:

• Lagrangian $\mathcal{L}_{eff}^{weak} \sim \sum_i C_i P_i$ and operators, *e.g.*,

$$\begin{split} P_{2(1)} &\sim (\bar{u}_L \gamma_\mu (T^a) q_L) (\bar{q}_L \gamma^\mu (T^a) c_L) \,, \\ P_7^{(\prime)} &\sim (\bar{u}_{L(R)} \sigma^{\mu\nu} c_{R(L)}) F_{\mu\nu} \,, \\ P_{9(10)} &\sim (\bar{u}_L \gamma_\mu c_L) (\bar{\ell} \gamma^\mu (\gamma_5) \ell) \,. \end{split}$$

Two-step matching (m_W, m_b) , light quarks (b, s, d) in loops.

(Effective) Wilson coefficients C_i^(eff) known at same order as in *b*-physics [Greub et al: 9603417, Fajfer et al: 0209250, SdB et al: 1606.05521, 1707.00988].

SM anatomy - $c \rightarrow u$ characteristics:

• $C_{10}\simeq 0$ (broken by, e.g., electromagnetic effects)

SM anatomy - $c \rightarrow u$ characteristics:

- $C_{10} \simeq 0$ (broken by, e.g., electromagnetic effects)
- Largest contribution to $C_{7,9}^{\text{eff}}$ [SdB: 1707.00988]:

Figure: Diagrams for heavy to light quark transitions at two loop QCD. The boxes denote operator insertions of $P_{1/2}$. The crosses indicate the emission of a photon, which may then couple to a lepton pair.

Calculation valid for arbitrary momentum transfer and also for *b*-decays.

Stefan de Boer

Charm decays

SM anatomy - from partons to hadrons:

Resonances evade GIM-mechanism, dominate branching ratios, uncertain, *e.g.*, [Feldmann et al: 1705.05891].

SM anatomy - from partons to hadrons:

Resonances evade GIM-mechanism, dominate branching ratios, uncertain, *e.g.*, [Feldmann et al: 1705.05891].

But, SM features of rare charm decays:

- "Resonance-catalyzed" observables [Fajfer et al: 1208.0759]
- SM weak phases are small
- Symmetries of QCD, QED

Where to search for (heavy) BSM physics:

- Windows in branching ratios, e.g., at high q^2
- Null tests based on (approximate) symmetries
- Extract SM contribution from SM-dominated modes and use SU(3)_F

Where to search for (heavy) BSM physics:

- Windows in branching ratios, e.g., at high q^2
- Null tests based on (approximate) symmetries
- Extract SM contribution from SM-dominated modes and use SU(3)_F

with different decays/observables to probe SM, sort BSM models

Figure: Comparison of short-distance spectrum sensitivities to different Wilson coefficient in $D^+ \rightarrow \pi^+ \mu^+ \mu^-$

 $D^0
ightarrow \mu^+ \mu^-$:

- Strongest constraints on difference of (pseudo)scalar Wilson coefficients from $\mathcal{B}_{exp} < 6.2 \times 10^{-9}$ [LHCb: 1305.5059]
- SM branching ratio commonly estimated orders of magnitude below \mathcal{B}_{exp} [Burdman et al: 0112235, Fajfer et al: 0104236, Paul et al: 1008.3141]
- $\mathcal{B}_{BSM} \lesssim \mathcal{B}_{exp}$, e.g., two Higgs doublet and leptoquark models [Burdman et al: 0112235, Golowich et al: 0903.2830, Paul et al: 1008.3141, 1212.4849, Wang et al: 1409.0181, SdB et al: 1510.00311, Fajfer et al: 1510.00965]

 $e^+e^- \to D^{0^*:}$ Probes (axial)vector Wilson coefficients, $\mathcal{B}_{\rm SM} \sim 10^{-18}$, $\mathcal{B}_{Z'} < 2.5 \times 10^{-11}$ [Khodjamirian et al: 1509.07123]

SM null tests

for $c \to u\ell\ell^{(\prime)}$ induced decays, e.g., $D \to P\ell\ell$, $D \to PP\ell\ell$:

- CP-asymmetries $A_{CP}^{SM} \sim \frac{\mathrm{Im}\lambda_b}{\lambda_s} \sim 10^{-3}$
- Angular distributions, *e.g.*, dilepton forward-backward asymmetry; involve C₁₀, (pseudo)scalar and tensor operators, all suppressed in SM

SM null tests

for $c \to u\ell\ell^{(\prime)}$ induced decays, e.g., $D \to P\ell\ell$, $D \to PP\ell\ell$:

- CP-asymmetries.
- Angular distributions.
- Lepton-universality, ratios muons/electrons equal one
 + percent [Fajfer et al: 1510.00965]; experimentally, same cuts
 required, electrons less constrained, e.g., [BESIII: 1802.09752]
- Lepton-flavor-violation, also quarkonium decays; absent in SM [Burdman et al: 0112235, SdB et al: 1510.00311, Hazard et al: 1607.00815, 1711.05314].
- Decays into neutrinos vanish in SM; also probe dark matter [Burdman et al: 0112235, Badin et al: 1005.1277, Paul et al: 1212.4849, SdB et al: 1510.00311, Belle: 1611.09455].

.. within BSM models

model	A _{CP}	A _{FB}	
Leptoquark models	$\gtrsim {\cal A}_{CP}^{ m SM}$	$\lesssim 8 imes 10^{-1}$	
Little Higgs model	$\lesssim \mathcal{O}(10^{-3})$	$\lesssim \mathcal{O}(5 imes 10^{-3})$	
Minimal SUSY SM	$\lesssim \mathcal{O}(10^{-3})$	$\lesssim \mathcal{O}(10^{-1})$	
Up vector-like quark singlet	-	$\lesssim 10^{-3}$	
Warped extra dimension	$\lesssim \mathcal{O}(10^{-2})$	$\lesssim \mathcal{O}(5 imes 10^{-2})$	
Z' boson	-	\sim 0	
SM	$< \mathcal{O}(10^{-3})$	~ 0	

[Fajter et al: 9805461, 0106333, 0511048, 0610032, 0706.1133, 0810.4858, 1510.00965, Burdman et al: 0112235, Paul et al: 1101.6053, 1212.4849, Bigi et al: 1110.2862, Delaunay et al: 1207.0474, Cappiello et al: 1209.4235, Wang et al: 1409.0181, SdB et al: 1510.00311, Guo et al: 1703.08799, Sahoo et al: 1705.02251]

Example: "Resonance-catalyzed" CP asymmetry

Scalar leptoquark (3,3,-1/3) + flavor pattern (inspired by *b*-decays [de Medeiros Varzielas et al: 1503.01084]) + constraints from Kaon decays $(SU(2)_L)$

probes C_9^{BSM} independent of strong phases $(\pi/2, \pi, 0, 3/2\pi)$ around ϕ

- $c
 ightarrow u \gamma$ induced decays:
 - Branching ratios dominated by long-distance effects, uncertain [Burdman et al: 9502329, Khodjamirian et al: 9506242, Fajfer et al: 9705327, 9801279, 0012116, 0209250, Dimou et al: 1212.2242, SdB et al: 1701.06392, Biswas et al: 1702.05059, Dias et al: 1711.09924].

 $B_c \to B_u^* \gamma$ and $\Gamma(D^0 \to \rho^0 \gamma) / \Gamma(D^0 \to \omega \gamma)$ could be modes to search for BSM physics [Fajfer et al: 9901252, 0006054].

• CP-asymmetries [Isidori et al: 1205.3164, Lyon et al: 1210.6546, SdB et al: 1701.06392].

$$A_{CP}^{
m SM} < \mathcal{O}(10^{-3})$$
, $A_{CP}^{
m BSM} \lesssim 10\%$,

 $A_{CP}^{\exp}(D^0 \to \rho^0 \gamma) = 0.056 \pm 0.152$, statistical uncertainty dominant [Belle: 1603.03257].

Photon polarization, C'_7/C_7 (following *b*-analyses [Gronau et al:

0107254, 0205065, 1704.05280, Hiller et al: 0108074, Müheim et al: 0802.0876, Kou et al: 1011.6593, 1604.07708, 1802.09443, LHCb: 1402.6852]).

Photon polarization, C_7'/C_7 (following *b*-analyses [Gronau et al: 0107254, 0205065, 1704.05280, Hiller et al: 0108074, Müheim et al: 0802.0876, Kou et al: 1011.6593, 1604.07708, 1802.09443, LHCb: 1402.6852]):

• Time-dependent analysis: Relate SM-dominated $\bar{D}^0 \rightarrow \bar{K^*}^0 \gamma$ to $\bar{D}^0 \rightarrow (\rho^0/\omega, \phi) \gamma$ using data + $SU(3)_F$ and extract BSM contribution [Lyon et al: 1210.6546, SdB et al: 1802.02769]

Photon polarization, C'_{7}/C_{7} (following *b*-analyses [Gronau et al: 0107254, 0205065, 1704.05280, Hiller et al: 0108074, Müheim et al: 0802.0876, Kou et al: 1011.6593, 1604.07708, 1802.09443, LHCb: 1402.6852]):

- Time-dependent analysis: Relate SM-dominated $\overline{D}^0 \rightarrow \overline{K^*}^0 \gamma$ to $\overline{D}^0 \rightarrow (\rho^0/\omega, \phi)\gamma$ using data + $SU(3)_F$ and extract BSM contribution [Lyon et al: 1210.6546, SdB et al: 1802.02769]
- Up-down asymmetry: $D \rightarrow \bar{K}_1(\rightarrow \bar{K}\pi\pi)\gamma$, experimentally, no dependence on strong phases between C_7 and C'_7 , heavier resonances phase space suppressed, but *D*-tagging required [SdB et al: 1802.02769]

Photon polarization, C'_{7}/C_{7} (following *b*-analyses [Gronau et al: 0107254, 0205065, 1704.05280, Hiller et al: 0108074, Müheim et al: 0802.0876, Kou et al: 1011.6593, 1604.07708, 1802.09443, LHCb: 1402.6852]):

- Time-dependent analysis: Relate SM-dominated $\overline{D}^0 \rightarrow \overline{K^*}^0 \gamma$ to $\overline{D}^0 \rightarrow (\rho^0/\omega, \phi)\gamma$ using data + $SU(3)_F$ and extract BSM contribution [Lyon et al: 1210.6546, SdB et al: 1802.02769]
- Up-down asymmetry: $D \rightarrow \bar{K}_1(\rightarrow \bar{K}\pi\pi)\gamma$, experimentally, no dependence on strong phases between C_7 and C'_7 , heavier resonances phase space suppressed, but *D*-tagging required [SdB et al: 1802.02769]
- Look into the future: Photon forward-backward asymmetry in $\Lambda_c o p\gamma$ [SdB et al: 1701.06392]

- BSM physics links flavor sectors.
- The structure of charm flavor-changing-neutral-current transitions allows to uniquely probe the SM and BSM physics with many decays and observables - despite branching ratios being dominated by long-distance effects.
- Not to forget: Rare charm decays may help to improve our understanding of QCD/check theoretical frameworks.
- The little sister of beauty is growing up: Rare charm decays at the level of rare b-decays back twenty years.
- Many experiments, *e.g.*, Belle (II), BESIII, LHCb and theoretical works ongoing, *e.g.*, [SdB, Hiller: $D \rightarrow PP\ell\ell$, to appear].

CKM elements V_{cd} and V_{cs}

Figure: From leptonic decays, HPQCD 11/10B for semileptonic decays. Update of FLAG 2016 including [RBC/UKQCD: 1701.02644].

Uncertainties one order of magnitude larger than from CKM unitarity.

Recently, ($N_f = 2 + 1 + 1$) computations [ETM: 1706.03657, Fermilab

Lattice/MILC: 1712.09262].

While lattice is including QED effects non-perturbatively, more precise experimental measurements are needed for CKM elements from leptonic decays.

 $D \rightarrow V$ and $\Lambda_c \rightarrow N$ form factors

 $D \rightarrow V$ form factors:

- Experimental results for $D \to \rho$ [CLEO-c: 1112.2884], $D \to \omega$ [BESIII: 1508.00151] and $D \to K^*$ [BESIII: 1512.08627]
- Lattice QCD [Flynn et al: 9710057, UKQCD: 0109035]
- Light-cone sum rules [Wu et al: 0604007]

Mostly, older results, at $q^2 = 0$, with large uncertainties and not fully compatible.

Recently, $\Lambda_c \rightarrow N$ form factors from lattice QCD [Meinel: 1712.05783].

•
$$D^0 \rightarrow e^+ e^-$$
?

Helicity suppressed, misidentification from $\mathcal{O}(\alpha m_D^2/m_e^2)$ enhanced $D^0 \rightarrow e^+ e^- \gamma$ with soft photons [Fajfer et al: 0209250].

•
$$D^{0^*} \rightarrow e^+ e^-$$
?
No helicity suppression, but D^{0^*} decays
strongly/electromagnetically (for $D^{0^*} \rightarrow \mu^+ \mu^-$ also
misidentification from $D^{0^*} \rightarrow \pi^+ \pi^-$).

$$ullet$$
 $e^+e^- o D^{0*}!$ [Khodjamirian et al: 1509.07123]