

Studies of associated production in ATLAS

Alessandro Cerri, on behalf of the ATLAS Collaboration

Motivation

- We don't have a coherent and predictive HEP picture of quarkonium production in collisions
- More data can help:
 - We keep accumulating 'data points' from hadron colliders, several E_{CM} conditions
 - Other production mechanisms can complement and help clarify the picture
- Several examples of such new "observables" come from 'associated production':
 - Broader range of quarkonium states (ATLAS, CMS, LHCb...)
 - W and Z bosons + quarkonium
 - ...more to come?

Associated Production, DPS, SPS

- Conceptually there are multiple possibilities to produce two objects in the same pp collision:
 One single process
 - Single Parton Scattering (SPS):

Described by a specific process Cross-section σ_{AB}^{SPS}

• Double Parton Scattering (DPS):

Described by the individual process cross-sections $\sigma_A \sigma_B$

And an effective cross section σ_{eff} accounting for the intrinsic probability of two processes happening simultaneously in the hadron collision

$$\sigma_{AB} = \sigma_{AB}^{SPS} + \sigma_{AB}^{DPS} = \sigma_{AB}^{SPS} + \frac{\sigma_A \sigma_B}{\sigma_{eff}} \times \frac{1}{1 + \delta_{AB}}$$

0÷1, accounting for interference etc.

A. Cerri - BEAUTY2018

Measuring DPS and SPS

- Cannot distinguish easily in a single collision
- Expect different kinematic properties e.g. A-B angular correlations
- DPS-SPS Separation is intrinsically uncertain:
 - Limited knowledge of σ_{eff}
 - Higher order SPS processes can undermine assumptions
- Experimentally one can measure N_A, N_B and N_{AB}, with different efficiencies and integrated luminosities

$$f_{DPS} = \frac{\sigma_{AB}^{DPS}}{\sigma_{AB}} = \frac{\sigma_A \sigma_B}{\sigma_{AB} \sigma_{eff}} \times \frac{1}{1 + \delta_{AB}} \propto \frac{1}{\sigma_{eff}} \times \frac{N_A N_B}{N_{AB}} \times \frac{1}{1 + \delta_{AB}}$$

Associated Production Results from ATLAS

W+jj	NJP 15 (2013) 033038	arXiv:1301.6873
J/ψ+W±	JHEP 04 (2014) 172	arXiv:1401.2831
J/ψ+Z ⁰	EPJ C75 (2015) 229	arXiv:1412.6428
4-jets	JHEP 11 (2016) 110	arXiv:1608.01857
J/ψ+J/ψ	EPJ C77 (2017) 76	arXiv:1612.02950

All results based on the excellent performance of the LHC and ATLAS detector

$W+J/\psi$

Ge)

Events / 0.04

- Based on 4.5 fb⁻¹ @ 7 TeV E_{CM}
 - Single-µ high-pT (>18 GeV) + E^T_{Miss} (>20 GeV) trigger, m_T(W)>40 GeV
 - Inclusive W sample (reference σ)
 - Two additional µ with p_T>3.5 GeV (2.5 GeV in fwd region)
 - p_T(J/ψ)> 8.5 GeV |y(J/ψ)|<2.1

UNIVERSITY

OF SUSSEX

- Backgrounds: Wb, tt, Z+ E^T_{Miss}, etc. → removed with cuts or s-plot subtracted
- Pile-up estimated to 1.8±0.2 events
- Fit signal and multi-jet m_T(W) templates to projected m_T(W): 29.2^{+7.5}_{-6.5} signal events
- DPS yield (using W+2j σ_{eff}): 10.8±4.2 events

- The fiducial volume (W+J/ ψ) to inclusive W production ratio can be derived: $R_{J/\psi}^{\rm fid} = (51 \pm 13 \pm 4) \times 10^{-8}$
- And extrapolated/corrected to $p_T^{J/\psi} \in [8,30] \text{ GeV}$ and $|\eta^{J/\psi}| < 2.1$: $R_{J/\psi}^{\text{incl}} = (126 \pm 32 \pm 9^{+41}_{-25}) \times 10^{-8}$
- With SPS obtained subtracting the estimated DPS contribution:

$$R_{J/\psi}^{\text{DPS sub}} = (78 \pm 32 \pm 22^{+41}_{-25}) \times 10^{-8}$$

$$\frac{10^{6}}{10^{6}} = \frac{10^{6}}{10^{6}} = \frac{10$$

$Z+J/\psi$: Signal Extraction

- Based on 20.3 fb⁻¹ @ 8 TeV $\rm E_{CM}$
 - $Z \rightarrow \ell \ell$ and $J/\psi \rightarrow \mu \mu$
 - Single-l high-p_T (>24 GeV) +2x offline leptons p_T^l>15 GeV
 - Two additional μ with p_T >3.5 GeV (2.5 GeV in fwd region)
 - One μ with p_T >4 GeV
 - p_T(J/ψ→µµ)> 8.5 GeV |y(J/ψ)|<2.1
 - Z leptons isolated to reject HF, conversions and fake e[±]
- Prompt/non-prompt components separated with s-plot weighting based on J/ψ mass-lifetime fit:

Prompt: 56±10±5 events Non-Prompt: 95±12±8 events Background: 138±17±9 events

UNIVERSITY

OF SUSSEX

2.8

Z→μμ Z→ee

3.6

3.2

J/w invariant mass [GeV]

$Z+J/\psi$: DPS and SPS

- Z candidates can be projected with s-Plots
 - Signal region m_z±10 GeV contains consistent with 0 background events
 - Pile-up Z-J/ψ combinations estimated: ~5.2 (prompt) / 2.7 (non-prompt)
- Z-J/ψ azimuthal angle distinguishes DPS and SPS
 - Using W+2j σ_{eff} :
 - Prompt: $N_{DPS}^{Z+J/\psi} = 11^{+5.7}_{-5.0}$
 - Non-prompt: $N_{DPS}^{Z+J/\psi} = 5.8^{+2.8}_{-2.6}$

Can set a bound on σ_{eff} based on extrapolation from small $\Delta \Phi$:

$$\sigma_{eff} < 5.3 (3.7) mb @ 68\% (95\%)$$

$Z+J/\psi$: f_{DPS} and $R_{J/\psi}$

A. Cerri - BEAUTY2018

p_J/w [GeV]

Four Jets

- 37pb⁻¹@7 TeV, low L_{inst} to minimize pile-up
- Triggers:
 4j (42.5 GeV,3x20 GeV) and 2j (42.5 GeV, 20 GeV) (20 GeV,20 GeV)
- Two classes of DPS:
 - dijet-dijet (cDPS) → two pairs of "back-to-back" jets
 - trijet-single jet (sDPS) → less correlation in 1st pair, little/no correlation for 2nd pair
- Discriminate DPS/SPS using di-jet angular variables ($\Delta \Phi$, $\Phi \eta$, $\vec{p}_T^1 + \vec{p}_T^2$)

Four Jets: NN Fit

• Fit data using the three templates above:

$$f_{\text{DPS}} = 0.092 \stackrel{+0.005}{_{-0.011}} \text{(stat.)} \stackrel{+0.033}{_{-0.037}} \text{(syst.)}$$
$$\sigma_{\text{eff}} = 14.9 \stackrel{+1.2}{_{-1.0}} \text{(stat.)} \stackrel{+5.1}{_{-3.8}} \text{(syst.)} \text{ mb}$$

115

UNIVERSITY

OF SUSSEX

Source of systematic uncertainty	Δf_{DPS}	$\Delta lpha_{2 \mathrm{j}}^{4 \mathrm{j}}$	$\Delta \sigma_{ m eff}$
Luminosity			±3.5%
Model dependence for detector corrections		±2%	±2%
Reweighting of AHJ	±6%		±6%
Jet reconstruction efficiency			±0.1 %
Single-vertex events selection			±0.1 %
Jet energy and angular resolution	±15%	±3%	±15%
JES uncertainty	+32 % -37 %	±12%	+31 % -19 %
Total systematic uncertainty	$^{+36}_{-40}\%$	±13%	+35 % -25 %

$Di-J/\psi$

ATLAS

200

15 = 8 TeV, 11.4 fb⁻¹

√s = 8 TeV, 11,4 fb⁻¹

DPS subtracted Δy - $\Delta \Phi$ distribution

- 11.4 fb⁻¹@8 TeV
- 2x(p_T>4 GeV) and 2x(p_T>2.5 GeV) muons
- ~1200 di-J/ ψ candidates p_T(J/ ψ)>8.5 GeV |y_{J/ ψ}|<2.1
 - Fiducial $\sigma_{J/\psi J/\psi}$ in two rapidity bins
 - Corrected (µ acceptance) $\sigma_{J/\psi J/\psi}$

 $82.2 \pm 8.3 \text{ (stat)} \pm 6.3 \text{ (syst)} \pm 0.9 \text{ (BF)} \pm 1.6 \text{ (lumi) pb, for } |y| < 1.05,$

 $78.3 \pm 9.2 \text{ (stat)} \pm 6.6 \text{ (syst)} \pm 0.9 \text{ (BF)} \pm 1.5 \text{ (lumi) pb, for } 1.05 \le |y| < 2.1$

• DPS model: overlay of J/ ψ from \neq events, normalized to Δy >1.8 $\Delta \Phi$ < $\pi/2$

$$f_{\text{DPS}} = (9.2 \pm 2.1 \text{ (stat)} \pm 0.5 \text{ (syst)})\%$$

$$\sigma_{\text{DPS}}^{J/\psi, J/\psi} = 14.8 \pm 3.5 \text{ (stat)} \pm 1.5 \text{ (syst)} \pm 0.2 \text{ (BF)} \pm 0.3 \text{ (lumi) pb}$$

$$\sigma_{\text{eff}} = 6.3 \pm 1.6 \text{ (stat)} \pm 1.0 \text{ (syst)} \pm 0.1 \text{ (BF)} \pm 0.1 \text{ (lumi) mb}.$$

Cumulative and DPS-only crossection measured vs $p_T(J/\psi_2) m(J/\psi J/\psi) p_T(J/\psi J/\psi)$

$Di-J/\psi d\sigma/d...$

Comparison with Predictions

- Reasonable agreement of data with SPS(NLO)+DPS(LO) predictions except:
- Low pT, large m and large Δy
- More realistic predictions (Feed-down, parton transverse motion) needed

 $p_{_{T}}(J/\psi J/\psi)$ [GeV]

Conclusions

- LHC fertile ground for associated production measurements
- ATLAS measures effects in Wjj, jjjj, Z and W plus J/ψ and di-J/ψ
- DPS visible and measurable
- σ_{eff} measurements may show some process dependency
- More measurements to come:
 - Run 2 data for W+J/ ψ

Arxiv 1610.07095 CMS ($\sqrt{s} = 8$ TeV, $\Upsilon(1S) + \Upsilon(1S)$, 2016) Arxiv 1612.07451 LHCb ($\sqrt{s} = 13$ TeV, $J/\psi + J/\psi$, 2017) Arxiv 1406.0484 CMS + Lansberg, Shao ($\sqrt{s} = 7$ TeV, $J/\psi + J/\psi$, 2014)

Backup

- Early data \rightarrow low pile-up multiplicity n_{pu}
- Based on 36 pb⁻¹ of data collected with n_{pu} <1
- Leptonic W decay (1 ℓ [e,µ] trigger) and di-jet events from minimum bias data
- In DPI W and jj are very loosely correlated (only through parton PDF)
- Main discriminants related to jj balance:

$$\Delta_{\text{jets}} = |\vec{p}_{\text{T}}^{J_1} + \vec{p}_{\text{T}}^{J_2}| \qquad \Delta_{\text{jets}}^{\text{n}} = \frac{|\vec{p}_{\text{T}}^{J_1} + \vec{p}_{\text{T}}^{J_2}|}{|\vec{p}_{\text{T}}^{J_1}| + |\vec{p}_{\text{T}}^{J_2}|}$$

Discriminants in Alpgen+Herwig+Jimmy simulation, compared to data-driven DPS template and MC AHJ template for SPS

• Simulation of main physics backgrounds:

